934 resultados para Irrigation pumps.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Technology assessment is a comprehensive form of policy research that examines the short- and long-term social consequences of the application or use of technology" (US Congress 1967).^ This study explored a research methodology appropriate for technology assessment (TA) within the health industry. The case studied was utilization of external Small-Volume Infusion Pumps (SVIP) at a cancer treatment and research center. Primary and secondary data were collected in three project phases. In Phase I, hospital prescription records (N = 14,979) represented SVIP adoption and utilization for the years 1982-1984. The Candidate Adoption-Use (CA-U) diffusion paradigm developed for this study was germane. Compared to classic and unorthodox curves, CA-U more accurately simulated empiric experience. The hospital SVIP 1983-1984 trends denoted assurance in prescribing chemotherapy and concomitant balloon SVIP efficacy and efficiency. Abandonment of battery pumps was predicted while exponential demand for balloon SVIP was forecast for 1985-1987. In Phase II, patients using SVIP (N = 117) were prospectively surveyed from July to October 1984; the data represented a single episode of therapy. The questionnaire and indices, specifically designed to measure the impact of SVIP, evinced face validity. Compeer group data were from pre-SVIP case reviews rather than from an inpatient sample. Statistically significant results indicated that outpatients using SVIP interacted socially more than inpatients using the alternative technology. Additionally, the hospital's education program effectively taught clients to discriminate between self care and professional SVIP services. In these contexts, there was sufficient evidence that the alternative technology restricted patients activity whereas SVIP permitted patients to function more independently and in a social lifestyle, thus adding quality to life. In Phase III, diffusion forecast and patient survey findings were combined with direct observation of clinic services to profile some economic dimensions of SVIP. These three project phases provide a foundation for executing: (1) cost effectiveness analysis of external versus internal infusors, (2) institutional resource allocation, and (3) technology deployment to epidemiology-significant communities. The models and methods tested in this research of clinical technology assessment are innovative and do assess biotechnology. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High tunnels are simple, plastic-covered, passive solar-heated structures in which crops are grown in the ground. They are used by fruit and vegetable growers to extend the growing season and intensify production in cold climates. The covered growing area creates a desert-like environment requiring carefully monitored irrigation practices. In contrast, the exterior expanse of a high tunnel generates a large volume of water with every measurable rainfall. Each 1,000 ft of high tunnel roof will generate approximately 300 gallons from a half inch of rain. Unless the high tunnel site is elevated from the surrounding area or drainage tiles installed, or other drainage accommodations are made around the perimeter, the soil along the inside edge of the high tunnel is nearly continuously saturated. High volumes of water can also create an erosion problem. The objective of this project was to design and construct a system that enables growers using high tunnels in their production operation to reduce drainage problems, erosion, and crop loss due to excess moisture in and around their high tunnel(s) without permanent environmental and soil mediations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a multidisciplinary environmental study that provides new insights into the relationships between sediment-organic matter characteristics and polybrominated diphenyl ethers (PBDEs) concentration. The aim of the present multivariate study was to correlate factors influencing PBDEs accumulation in sediment by using principal component analysis (PCA). Organic matter studies by Fourier Transform-Infrared spectroscopy and physicochemical analyses (Total Organic Carbon, pH, electrical conductivity) of sediment samples were considered for PCA. Samples were collected from an artificial irrigation network on the Mendoza River irrigation areas. PCA provided a comprehensive analysis of the studied variables, identifying two components that explained 63% of the data variance. Those factors were mainly associated to organic matter degradation degree, which represent a new insight into the relationships between organic matter in sediments and PBDEs fate. In this sense it was possible to determine that not only the content but also the type of organic matter (chemical structure) could be relevant when evaluating PBDEs accumulation and transport in the environment. Typification of organic matter may be a useful tool to predict more feasible areas where PBDE, may accumulate, as well as sediment transportation capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate the economic impacts of irrigation using the panel data set from rural Thailand. We employed difference-in-differences estimation and showed that tertiary irrigation has unexpected impacts. Contrary to the local experts predicitions that it should have substantial productivity impacts as it allows better water controls for farmers, we found largely zero profitability impacts. Another unexpected finding is that, while profitability is not affected, we see an increase in cultivation probability with the construction of tertiary canals. This is observed in both wet and dry seasons. This finding suggests that Thai farmers are willing to expand operation scale once they get water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years, vulnerability assessment has emerged as a need for policy making instead of being a pure academic exercise (Hinkel, 2010). In the current context of changing climate, increasing water scarcity threatens economic activities in many arid or semi-arid regions of the World. Climate change (CC) science and policy debates have traditionally focused on CC mitigation and impact assessment (Krysanova et al., 2010). However, even if mitigation policies are successfully enforced some climate change is still expected. Then, adaptation is strongly necessary and, for that, improved knowledge on vulnerability and adaptive capacity is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

production, during the summer of 2010. This farm is integrated at the Spanish research network for the sugar beet development (AIMCRA) which regarding irrigation, focuses on maximizing water saving and cost reduction. According to AIMCRA 0 s perspective for promoting irrigation best practices, it is essential to understand soil response to irrigation i.e. maximum irrigation length for each soil infiltration capacity. The Use of Humidity Sensors provides foundations to address soil 0 s behavior at the irrigation events and, therefore, to establish the boundaries regarding irrigation length and irrigation interval. In order to understand to what extent farmer 0 s performance at Tordesillas farm could have been potentially improved, this study aims to address suitable irrigation length and intervals for the given soil properties and evapotranspiration rates. In this sense, several humidity sensors were installed: (1) A Frequency Domain Reflectometry (FDR) EnviroScan Probe taking readings at 10, 20, 40 and 60cm depth and (2) different Time Domain Reflectometry (TDR) Echo 2 and Cr200 probes buried in a 50cm x 30cm x 50cm pit and placed along the walls at 10, 20, 30 and 40 cm depth. Moreover, in order to define soil properties, a textural analysis at the Tordesillas Farm was conducted. Also, data from the Tordesillas meteorological station was utilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of water content on a sandy soil during the sprinkler irrigation campaign, in the summer of 2010, of a field of sugar beet crop located at Valladolid (Spain) is assessed by a capacitive FDR (Frequency Domain Reflectometry) EnviroScan. This field is one of the experimental sites of the Spanish research center for the sugar beet development (AIMCRA). The objective of the work focus on monitoring the soil water content evolution of consecutive irrigations during the second two weeks of July (from the 12th to the 28th). These measurements will be used to simulate water movement by means of Hydrus-2D. The water probe logged water content readings (m3/m3) at 10, 20, 40 and 60 cm depth every 30 minutes. The probe was placed between two rows in one of the typical 12 x 15 m sprinkler irrigation framework. Furthermore, a texture analysis at the soil profile was also conducted. The irrigation frequency in this farm was set by the own personal farmer 0 s criteria that aiming to minimizing electricity pumping costs, used to irrigate at night and during the weekend i.e. longer irrigation frequency than expected. However, the high evapotranspiration rates and the weekly sugar beet water consumption—up to 50mm/week—clearly determined the need for lower this frequency. Moreover, farmer used to irrigate for six or five hours whilst results from the EnviroScan probe showed the soil profile reaching saturation point after the first three hours. It must be noted that AIMCRA provides to his members with a SMS service regarding weekly sugar beet water requirement; from the use of different meteorological stations and evapotranspiration pans, farmers have an idea of the weekly irrigation needs. Nevertheless, it is the farmer 0 s decision to decide how to irrigate. Thus, in order to minimize water stress and pumping costs, a suitable irrigation time and irrigation frequency was modeled with Hydrus-2D. Results for the period above mentioned showed values of water content ranging from 35 and 30 (m3/m3) for the first 10 and 20cm profile depth (two hours after irrigation) to the minimum 14 and 13 (m3/m3) ( two hours before irrigation). For the 40 and 60 cm profile depth, water content moves steadily across the dates: The greater the root activity the greater the water content variation. According to the results in the EnviroScan probe and the modeling in Hydrus-2D, shorter frequencies and irrigation times are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evapotranspiration (ETc) of sprinkler-irrigated rice was determined for the semiarid conditions of NE Spain during 2001, 2002 and 2003. The surface renewal method, after calibration against the eddy covariance method, was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Latent heat flux values were obtained by solving the energy balance equation. Finally, lysimeter measurements were used to validate the evapotranspiration values obtained with the surface renewal method. Seasonal rice evapotranspiration was about 750–800 mm. Average daily ETc for mid-season (from 90 to 130 days after sowing) was 5.1, 4.5 and 6.1 mm day−1 for 2001, 2002 and 2003, respectively. The experimental weekly crop coefficients fluctuated in the range of 0.83–1.20 for 2001, 0.81–1.03 for 2002 and 0.84–1.15 for 2003. The total growing season was about 150–160 days. In average, the crop coefficients for the initial (Kcini), mid-season (Kcmid) and late-season stages (Kcend) were 0.92, 1.06 and 1.03, respectively, the length of these stages being about 55, 45 and 25 days, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum production in hedgerow olive orchards is likely not achieved with maximum evapotranspiration over the long-term. Thus, regulated deficit irrigation (RDI) should be considered as a management option. Four irrigation treatments were evaluated during the summer when olive is most drought resistant. Control (CON) was irrigated to maintain the rootzone close to field capacity. Severe water deficit was applied by irrigating 30% CON from end of fruit drop to end July (DI-J) and from end July until beginning of oil synthesis (DI-A). Less severe water deficit was applied during July and August (DI-JA) by irrigating 50% CON. Flowering, fruiting, abscission, fruit development, fresh and dry weight of fruits, and oil production were evaluated. There were not significant differences in number of buds initiated, number of fruits per inflorescence and fruit drop. Oil production was significantly different between irrigation treatments in all experimental years. CON produced more oil and fruit with higher oil% than DI-A and DI-JA. Oil production of DI-J was not significantly reduced compared to CON and oil% was greater. DI-J was the most effective RDI strategy; with 16% less applied water relative to CON average loss in oil production of 8% was not significantly different to CON. While DI-JA saved most water (27%), oil production was reduced by 15%. Greatest loss in oil production (21%) was observed in DI-A with water saving of 22%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pressure irrigation-water distribution networks, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of flow rate. In addition, applied water volume is used controlled operating the valve during a calculated time interval, and assuming constant flow rate. In general, a pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Its lecture could be used for refining the water balance but its accuracy must be taken into account. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. The objective of this work is to asses the influence of the performance on the applied volume during the whole irrigation events in a year. The results of the study have been obtained introducing the flow rate into a PRV model. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of the PRV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la conferencia se expone la situación en España de los riegos a presión considerando los condicionantes de escasez de agua y el precio de la energía.