293 resultados para Inversions immobiliàries
Resumo:
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is considered a progressive cardiomyopathy. However, data on the clinical features of disease progression are limited. The aim of this study was to assess 12-lead surface electrocardiographic (ECG) changes during long-term follow-up, and to compare these findings with echocardiographic data in our large cohort of patients with ARVC/D. METHODS Baseline and follow-up ECGs of 111 patients from three tertiary care centers in Switzerland were systematically analyzed with digital calipers by two blinded observers, and correlated with findings from transthoracic echocardiography. RESULTS The median follow-up was 4 years (IQR 1.9-9.2 years). ECG progression was significant for epsilon waves (baseline 14% vs. follow-up 31%, p = 0.01) and QRS duration (111 ms vs. 114 ms, p = 0.04). Six patients with repolarization abnormalities according to the 2010 Task Force Criteria at baseline did not display these criteria at follow-up, whereas in all patients with epsilon waves at baseline these depolarization abnormalities also remained at follow-up. T wave inversions in inferior leads were common (36% of patients at baseline), and were significantly associated with major repolarization abnormalities (p = 0.02), extensive echocardiographic right ventricular involvement (p = 0.04), T wave inversions in lateral precordial leads (p = 0.05), and definite ARVC/D (p = 0.05). CONCLUSIONS Our data supports the concept that ARVC/D is generally progressive, which can be detected by 12-lead surface ECG. Repolarization abnormalities may disappear during the course of the disease. Furthermore, the presence of T wave inversions in inferior leads is common in ARVC/D.
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Resumo:
Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH₄) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH₄ emissions to be 196 ± 18 Gg yr⁻¹ for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206 ± 33 Gg yr⁻¹ as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH₄ source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH₄ emissions by 10 to 20 % in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH₄ in Switzerland. This is consistent with rather low emissions of 8.4 Gg yr⁻¹ reported by the SGHGI but inconsistent with the much higher value of 32 Gg yr⁻¹ implied by the EDGARv4.2 inventory for this sector. Increased CH₄ emissions (up to 30 % compared to the prior) were deduced for the north-eastern parts of Switzerland. This feature was common to most sensitivity inversions, which is a strong indicator that it is a real feature and not an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements.
Resumo:
A wide-angle seismic experiment at the Atlantis II Fracture Zone, Southwest Indian Ridge, together with geochemical analyses of dredged basalt glass samples from a site conjugate to Ocean Drilling Program hole 735B has allowed determination of the thickness and the most likely lithological composition of the crust beneath hole 735B. The measured Na, composition of 3.3 +/- 0.1 corresponds to a melt thickness of 3 +/- 1 km, a result consistent with rare earth element inversions which indicate a melt thickness of between 1.5 and 4.5 km. The seismic crustal thickness to the north and south of the Atlantis Platform (on which hole 735B is located) is 4 +/- 1 km, and probably consists largely of magmatic material since the seismic and inferred melt thicknesses agree within experimental uncertainty. Beneath hole 735B itself. the Moho is at a depth of 5 +/- 1 km beneath the seafloor. The seismic model suggests that, on average. about 1 km of upper crust has been unroofed on the Atlantis Platform. However, allowing for the inferred local unroofing of 2 km of upper crust at 735B, the base of the magmatic crust beneath this location is probably about 2 km beneath the seafloor, and is underlain by a 2-3 km thick layer of serpentinised mantle peridotite. The P-wave velocity of 6.9 km/s for the serpentinised peridotite layer corresponds to a 35 +/- 10 vol% serpentine content. The Moho beneath hole 735B probably represents a serpentinisation front.
Resumo:
Apatite (U-Th-Sm)/He (AHe) thermochronology is increasingly used for reconstructing geodynamic processes of the upper crust and the surface. Results of AHe thermochronology, however, are often in conflict with apatite fission track (AFT) thermochronology, yielding an inverted age-relationship with AHe dates older than AFT dates of the same samples. This effect is mainly explained by radiation damage of apatite, either impeding He diffusion or causing non-thermal annealing of fission tracks. So far, systematic age inversions have only been described for old and slowly cooled terranes, whereas for young and rapidly cooled samples 'too old' AHe dates are usually explained by the presence of undetected U and/or Th-rich micro-inclusions. We report apatite (U-Th-Sm)/He results for rapidly cooled volcanogenic samples deposited in a deep ocean environment with a relatively simple post-depositional thermal history. Robust age constraints are provided independently through sample biostratigraphy. All studied apatites have low U contents (< 5 ppm on average). While AFT dates are largely in agreement with deposition ages, most AHe dates are too old. For leg 43, where deposition age of sampled sediment is 26.5-29.5 Ma, alpha-corrected average AHe dates are up to 45 Ma, indicating overestimations of AHe dates up to 50%. This is explained by He implantation from surrounding host U-Th rich sedimentary components and it is shown that AHe dates can be "corrected" by mechanically abrading the outer part of grains. We recommend that particularly for low U-Th-apatites the possibility of He implantation should be carefully checked before considering the degree to which the alpha-ejection correction should be applied.
Resumo:
A multidisciplinary oceanographic survey of the White Sea was carried out in the Gorlo Straight, Basin, and Kandalaksha Bay regions including estuaries of Niva, Kolvitza and Knyazhaya rivers. Hydrophysical study in the northern part of the Basin revealed long-lived step-like structures and inversions in vertical profiles of temperature and salinity, which formed due to tidal mixing of saline and cold Barents Sea waters and warmer White Sea waters in the Gorlo Straight. Biological studies revealed the main features of spatial distribution, as well as qualitative and quantitative composition of phyto- and zooplankton in all studied areas; tolerance of main zooplankton species to fresh water influence in estuaries was shown. Study of suspended matter in estuaries clearly demonstrated physicochemical transformations of material supplied by the rivers. Data on vertical particle flux in the deep part of the Kandalaksha Bay showed difference between the upper and near-bottom layers, which could result from sinking of spring phytoplankton bloom products and supply of terrigenic suspended matter from the nepheloid layer formed by tidal currents.
Resumo:
A collection of miscellaneous pamphlets on the romance languages.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and T-C transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike T-C transposons in mutator strains of C elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control T-C activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Magnetoencephalography (MEG) is a non-invasive brain imaging technique with the potential for very high temporal and spatial resolution of neuronal activity. The main stumbling block for the technique has been that the estimation of a neuronal current distribution, based on sensor data outside the head, is an inverse problem with an infinity of possible solutions. Many inversion techniques exist, all using different a-priori assumptions in order to reduce the number of possible solutions. Although all techniques can be thoroughly tested in simulation, implicit in the simulations are the experimenter's own assumptions about realistic brain function. To date, the only way to test the validity of inversions based on real MEG data has been through direct surgical validation, or through comparison with invasive primate data. In this work, we constructed a null hypothesis that the reconstruction of neuronal activity contains no information on the distribution of the cortical grey matter. To test this, we repeatedly compared rotated sections of grey matter with a beamformer estimate of neuronal activity to generate a distribution of mutual information values. The significance of the comparison between the un-rotated anatomical information and the electrical estimate was subsequently assessed against this distribution. We found that there was significant (P < 0.05) anatomical information contained in the beamformer images across a number of frequency bands. Based on the limited data presented here, we can say that the assumptions behind the beamformer algorithm are not unreasonable for the visual-motor task investigated.
Resumo:
Jackson System Development (JSD) is an operational software development method which addresses most of the software lifecycle either directly or by providing a framework into which more specialised techniques can fit. The method has two major phases: first an abstract specification is derived that is in principle executable; second the specification is implemented using a variety of transformations. The object oriented paradigm is based on data abstraction and encapsulation coupled to an inheritance architecture that is able to support software reuse. Its claims of improved programmer productivity and easier program maintenance make it an important technology to be considered for building complex software systems. The mapping of JSD specifications into procedural languages typified by Cobol, Ada, etc., involves techniques such as inversion and state vector separation to produce executable systems of acceptable performance. However, at present, no strategy exists to map JSD specifications into object oriented languages. The aim of this research is to investigate the relationship between JSD and the object oriented paradigm, and to identify and implement transformations capable of mapping JSD specifications into an object oriented language typified by Smalltalk-80. The direction which the transformational strategy follows is one whereby the concurrency of a specification is removed. Two approaches implementing inversion - an architectural transformation resulting in a simulated coroutine mechanism being generated - are described in detail. The first approach directly realises inversions by manipulating Smalltalk-80 system contexts. This is possible in Smalltalk-80 because contexts are first class objects and are accessible to the user like any other system object. However, problems associated with this approach are expounded. The second approach realises coroutine-like behaviour in a structure called a `followmap'. A followmap is the results of a transformation on a JSD process in which a collection of followsets is generated. Each followset represents all possible state transitions a process can undergo from the current state of the process. Followsets, together with exploitation of the class/instance mechanism for implementing state vector separation, form the basis for mapping JSD specifications into Smalltalk-80. A tool, which is also built in Smalltalk-80, supports these derived transformations and enables a user to generate Smalltalk-80 prototypes of JSD specifications.
Resumo:
The Acanthuridae family is a representative group from the marine fish that plays a key role in ecological dynamics of coral reefs. Three species are common along coastal reefs of Western Atlantic: Acanthurus coeruleus, Acanthurus bahianus and Acanthurus chirurgus. In the present study, cytogenetic data are presented for these three species Acanthurus based on classical cytogenetic methods and mapping of repetitive sequences such as ribosomal 18S and 5S rDNA and telomeric repeats to improve their karyotype evolutionary analyses. The cytogenetic pattern of these species indicated sequential steps of chromosomal rearrangements dating back 19 to 5 millions of years ago (M.a.) that accounted for their interspecific differences. A. coeruleus (2n=48; 2sm+4st+42a), A. bahianus (2n=36; 12m+2sm+4st+18a) and A. chirurgus (2n=34; 12m+2sm+4st+16a) share an older set of three chromosomal pairs that were originated through pericentric inversions. A set of six large metacentric pairs formed by Robertsonian (Rb) translocations found in A. bahianus and A. chirurgus and a putative in tandem fusion found in A. chirurgus are more recent events. The lack of interstitial telomeric sequences (ITS) in spite of several centric fusions in A. bahianus and A. chirurgus might be related to the long period of time after their occurrence (estimated in 5 M.a.). Furthermore, the homeologies among the chromosome pairs bearing ribosomal genes, in addition to other structural features, highlight large conserved chromosomal regions in the three species. Our findings indicate that macrostructural changes occurred during the cladogenesis of these species were not followed by conspicuous microstructural rearrangements in the karyotypes.
The CCRUSH Study: Coarse and fine particulate matter measurements in northeastern Colorado 2009-2012
Resumo:
Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg/m**3 and mean PM10-2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m/s. Little wind speed dependence was observed for the residential sites in Denver and Greeley.
Resumo:
The physical and biological carbon pumps in the different hydrographic and biogeochemical regimes of the Atlantic Sector of the Southern Ocean are controlled by a series of coupled physical, chemical and biological processes and a project named Eddy-Pump was designed to study them. The Eddy Pump field campaign was carried out during RV Polarstern Cruise ANT-XXVIII/3 between January and March 2012. Particular emphasis was laid on the differences which occur along the axis of the Antarctic Circumpolar Current (ACC) with its associated mesoscale eddy field. The study sites were selected in order to represent (1) the central ACC with its regular separation in different frontal jets, investigated by a meridional transect along 10°E; (2) a large-scale bloom west of the Mid-Atlantic Ridge which lasted several months with conspicuous chlorophyll-poor waters to its immediate east studied by a three-dimensional mesoscale survey centred at 12°40'W; and (3) the Georgia Basin north of the island of South Georgia, which regularly features an extended and dense phytoplankton bloom, was investigated by a mesoscale survey centred at 38°12'W. While Eddy-Pump represents an interdisciplinary project by design, we here focus on describing the variable physical environment within which the different biogeochemical regimes developed. For describing the physical environment we use measurements of temperature, salinity and density, of mixed-layer turbulence parameters, of dynamic heights and horizontal current vectors, and of flow trajectories obtained from surface drifters and submerged floats. This serves as background information for the analyses of biological and chemical processes and of biogeochemical fluxes addressed by other papers in this issue. The section along 10°E between 44°S and 53°S showed a classical ACC structure with well-known hydrographic fronts, the Subantarctic Front (SAF) at 46.5°S, the Antarctic Polar Front (APF) split in two, at 49.25°S and 50.5°S, and the Southern Polar Front (SPF) at 52.5°S. Each front was associated with strong eastward flows. The West Mid-Atlantic Ridge Survey showed a weak and poorly resolved meander structure between the APF and the SPF. During the first eight days of the survey the oceanographic conditions at the Central Station at 12°40'W remained reasonably constant. However after that, conditions became more variable in the thermocline with conspicuous temperature inversions and interleavings and also a decrease in temperature in the surface layer. At the very end of the period of observation the conditions in the thermocline returned to being similar to those observed during the early part of the period with however the mixed layer temperature raised. The period of enhanced thermohaline variability was accompanied by increased currents. The Georgia Basin Survey showed a very strong zonal jet at its northern edge which connects to a large cyclonic meander that itself joins an anticyclonic eddy in the southeastern quadrant. The water mass contrasts in this survey were stronger than in the West Mid-Atlantic Ridge Survey, but similar to those met along 10°E with the exception that the warm and saline surface water typical of the northern side of the SAF was not covered by the Georgia Basin Survey. Mixed layers found during Eddy-Pump were typically deep, but varied between the three survey areas; the mean depths and standard variations of the mixed layer along the 10°E were 77.2±24.7 m, at the West Mid-Atlantic Ridge 66.7±17.7 m, and in the Georgia Basin 36.8±10.7 m.
Resumo:
The Ría de Vigo is a bay strongly influenced by upwelling-downwelling cycles along the adjacent coast of NW Iberia. Moored and ship-board observations during September 2006 showed that subduction, initially associated with an estuarine circulation, strengthened when a strong downwelling circulation, resulting from northward wind over the coastal ocean, was generated in the outer ría causing ambient waters to be advected outward in the lower layer. Incoming surface waters confined the estuarine circulation to the shallow interior and displaced isopleths downward through the water column at ∼10 m d−1. As the estuarine circulation retreated inward, strong flow convergence developed between middle and inner ria in the layer above 15 m, while divergence developed beneath. The convergence increased through the period of downwelling-favorable wind at a rate consistent with the observed isopleth displacement velocities. The coefficient of turbulent diffusion Kt, from a microstructure profiler, indicated that mixing was strong in the estuarine circulation and subsequently in the downwelling zone, where localized instabilities and temperature-salinity inversions were observed. During the downwelling, concentrations of phytoplankton, including potentially harmful species, increased, especially in the middle and inner ria, as a result of inward advection, subduction and the ability of the dinoflagellates to maintain their position in the water column by swimming. In the course of the 5 day event, the water mass of all but the innermost ría was flushed completely and replaced by waters originating in the coastally-trapped poleward flow along the Atlantic coastline.