832 resultados para Internet of Things (IoT)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto describe la metodología a seguir para conectar la plataforma Arduino a dispositivos Android y establecer una conexión que permita controlar dicha plataforma. Sobre Arduino se acoplará un módulo 3G que permitirá hacer uso de funcionalidades propias de los teléfonos móviles. El objetivo final del proyecto era el control del módulo 3G mediante comandos AT enviados desde un dispositivo Android (tableta) conectado a través de USB. Para ello, se ha desarrollado una aplicación de demostración que permite el uso de algunas de las funcionalidades de comunicación del módulo 3G. Para alcanzar el objetivo propuesto se ha investigado sobre temas tales como: internet de las cosas, las tecnologías de comunicaciones móviles, el sistema operativo Android y el desarrollo de aplicaciones móviles, la plataforma Arduino, el funcionamiento del módulo 3G y sobre la comunicación serie que permitirá comunicarse entre Android y módulo 3G. El proyecto proporciona una guía de iniciación con explicaciones de los diferentes dispositivos, tecnologías y pasos a seguir para la integración de las diferentes plataformas que se han usado en el proyecto: Arduino, Módulo de comunicaciones 3G, y Android. ABSTRACT. This project describes the methodology to connect the Arduino platform to Android devices and establish a connection to allow the platform control. A 3G module will be engaged on Arduino allowing the usage of mobile phones functionalities. The main objective of the project was the control of 3G module through AT commands sent from an Android device (tablet) connected via USB. For that, a demonstration application was developed to permit the use of some communication features of 3G module. To achieve the target, an investigation has been carried out about issues such as: internet of things, mobile communications technologies, the Android operating system and mobile applications development, the Arduino platform, the 3G module operation and serial communication that allows the communication between Android and the 3G module. The project provides a starter guide with explanations of the different devices, technologies and steps for the integration of the different platforms that have been used in the project: Arduino, 3G communications module and Android.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La importancia de los sistemas de recomendación ha experimentado un crecimiento exponencial como consecuencia del auge de las redes sociales. En esta tesis doctoral presentaré una amplia visión sobre el estado del arte de los sistemas de recomendación. Incialmente, estos estaba basados en fitrado demográfico, basado en contendio o colaborativo. En la actualidad, estos sistemas incorporan alguna información social al proceso de recomendación. En el futuro utilizarán información implicita, local y personal proveniente del Internet de las cosas. Los sistemas de recomendación basados en filtrado colaborativo se pueden modificar con el fin de realizar recomendaciones a grupos de usuarios. Existen trabajos previos que han incluido estas modificaciones en diferentes etapas del algoritmo de filtrado colaborativo: búsqueda de los vecinos, predicción de las votaciones y elección de las recomendaciones. En esta tesis doctoral proporcionaré un nuevo método que realizar el proceso de unficación (pasar de varios usuarios a un grupo) en el primer paso del algoritmo de filtrado colaborativo: cálculo de la métrica de similaridad. Proporcionaré una formalización completa del método propuesto. Explicaré cómo obtener el conjunto de k vecinos del grupo de usuarios y mostraré cómo obtener recomendaciones usando dichos vecinos. Asimismo, incluiré un ejemplo detallando cada paso del método propuesto en un sistema de recomendación compuesto por 8 usuarios y 10 items. Las principales características del método propuesto son: (a) es más rápido (más eficiente) que las alternativas proporcionadas por otros autores, y (b) es al menos tan exacto y preciso como otras soluciones estudiadas. Para contrastar esta hipótesis realizaré varios experimentos que miden la precisión, la exactitud y el rendimiento del método. Los resultados obtenidos se compararán con los resultados de otras alternativas utilizadas en la recomendación de grupos. Los experimentos se realizarán con las bases de datos de MovieLens y Netflix. ABSTRACT The importance of recommender systems has grown exponentially with the advent of social networks. In this PhD thesis I will provide a wide vision about the state of the art of recommender systems. They were initially based on demographic, contentbased and collaborative filtering. Currently, these systems incorporate some social information to the recommendation process. In the future, they will use implicit, local and personal information from the Internet of Things. As we will see here, recommender systems based on collaborative filtering can be used to perform recommendations to group of users. Previous works have made this modification in different stages of the collaborative filtering algorithm: establishing the neighborhood, prediction phase and determination of recommended items. In this PhD thesis I will provide a new method that carry out the unification process (many users to one group) in the first stage of the collaborative filtering algorithm: similarity metric computation. I will provide a full formalization of the proposed method. I will explain how to obtain the k nearest neighbors of the group of users and I will show how to get recommendations using those users. I will also include a running example of a recommender system with 8 users and 10 items detailing all the steps of the method I will present. The main highlights of the proposed method are: (a) it will be faster (more efficient) that the alternatives provided by other authors, and (b) it will be at least as precise and accurate as other studied solutions. To check this hypothesis I will conduct several experiments measuring the accuracy, the precision and the performance of my method. I will compare these results with the results generated by other methods of group recommendation. The experiments will be carried out using MovieLens and Netflix datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the key factors for a given application to take advantage of cloud computing is the ability to scale in an efficient, fast and reliable way. In centralized multi-party video conferencing, dynamically scaling a running conversation is a complex problem. In this paper we propose a methodology to divide the Multipoint Control Unit (the video conferencing server) into more simple units, broadcasters. Each broadcaster receives the media from a participant, processes it and forwards it to the rest. These broadcasters can be distributed among a group of CPUs. By using this methodology, video conferencing systems can scale in a more granular way, improving the deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi party videoconference systems use MCU (Multipoint Control Unit) devices to forward media streams. In this paper we describe a mechanism that allows the mobility of such streams between MCU devices. This mobility is especially useful when redistribution of streams is needed due to scalability requirements. These requirements are mandatory in Cloud scenarios to adapt the number of MCUs and their capabilities to variations in the user demand. Our mechanism is based on TURN (Traversal Using Relay around NAT) standard and adapts MICE (Mobility with ICE) specification to the requirements of this kind of scenarios. We conclude that this mechanism achieves the stream mobility in a transparent way for client nodes and without interruptions for the users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LLas nuevas tecnologías orientadas a la nube, el internet de las cosas o las tendencias "as a service" se basan en el almacenamiento y procesamiento de datos en servidores remotos. Para garantizar la seguridad en la comunicación de dichos datos al servidor remoto, y en el manejo de los mismos en dicho servidor, se hace uso de diferentes esquemas criptográficos. Tradicionalmente, dichos sistemas criptográficos se centran en encriptar los datos mientras no sea necesario procesarlos (es decir, durante la comunicación y almacenamiento de los mismos). Sin embargo, una vez es necesario procesar dichos datos encriptados (en el servidor remoto), es necesario desencriptarlos, momento en el cual un intruso en dicho servidor podría a acceder a datos sensibles de usuarios del mismo. Es más, este enfoque tradicional necesita que el servidor sea capaz de desencriptar dichos datos, teniendo que confiar en la integridad de dicho servidor de no comprometer los datos. Como posible solución a estos problemas, surgen los esquemas de encriptación homomórficos completos. Un esquema homomórfico completo no requiere desencriptar los datos para operar con ellos, sino que es capaz de realizar las operaciones sobre los datos encriptados, manteniendo un homomorfismo entre el mensaje cifrado y el mensaje plano. De esta manera, cualquier intruso en el sistema no podría robar más que textos cifrados, siendo imposible un robo de los datos sensibles sin un robo de las claves de cifrado. Sin embargo, los esquemas de encriptación homomórfica son, actualmente, drás-ticamente lentos comparados con otros esquemas de encriptación clásicos. Una op¬eración en el anillo del texto plano puede conllevar numerosas operaciones en el anillo del texto encriptado. Por esta razón, están surgiendo distintos planteamientos sobre como acelerar estos esquemas para un uso práctico. Una de las propuestas para acelerar los esquemas homomórficos consiste en el uso de High-Performance Computing (HPC) usando FPGAs (Field Programmable Gate Arrays). Una FPGA es un dispositivo semiconductor que contiene bloques de lógica cuya interconexión y funcionalidad puede ser reprogramada. Al compilar para FPGAs, se genera un circuito hardware específico para el algorithmo proporcionado, en lugar de hacer uso de instrucciones en una máquina universal, lo que supone una gran ventaja con respecto a CPUs. Las FPGAs tienen, por tanto, claras difrencias con respecto a CPUs: -Arquitectura en pipeline: permite la obtención de outputs sucesivos en tiempo constante -Posibilidad de tener multiples pipes para computación concurrente/paralela. Así, en este proyecto: -Se realizan diferentes implementaciones de esquemas homomórficos en sistemas basados en FPGAs. -Se analizan y estudian las ventajas y desventajas de los esquemas criptográficos en sistemas basados en FPGAs, comparando con proyectos relacionados. -Se comparan las implementaciones con trabajos relacionados New cloud-based technologies, the internet of things or "as a service" trends are based in data storage and processing in a remote server. In order to guarantee a secure communication and handling of data, cryptographic schemes are used. Tradi¬tionally, these cryptographic schemes focus on guaranteeing the security of data while storing and transferring it, not while operating with it. Therefore, once the server has to operate with that encrypted data, it first decrypts it, exposing unencrypted data to intruders in the server. Moreover, the whole traditional scheme is based on the assumption the server is reliable, giving it enough credentials to decipher data to process it. As a possible solution for this issues, fully homomorphic encryption(FHE) schemes is introduced. A fully homomorphic scheme does not require data decryption to operate, but rather operates over the cyphertext ring, keeping an homomorphism between the cyphertext ring and the plaintext ring. As a result, an outsider could only obtain encrypted data, making it impossible to retrieve the actual sensitive data without its associated cypher keys. However, using homomorphic encryption(HE) schemes impacts performance dras-tically, slowing it down. One operation in the plaintext space can lead to several operations in the cyphertext space. Because of this, different approaches address the problem of speeding up these schemes in order to become practical. One of these approaches consists in the use of High-Performance Computing (HPC) using FPGAs (Field Programmable Gate Array). An FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing - hence "field-programmable". Compiling into FPGA means generating a circuit (hardware) specific for that algorithm, instead of having an universal machine and generating a set of machine instructions. FPGAs have, thus, clear differences compared to CPUs: - Pipeline architecture, which allows obtaining successive outputs in constant time. -Possibility of having multiple pipes for concurrent/parallel computation. Thereby, In this project: -We present different implementations of FHE schemes in FPGA-based systems. -We analyse and study advantages and drawbacks of the implemented FHE schemes, compared to related work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años hemos sido testigos de la expansión del paradigma big data a una velocidad vertiginosa. Los cambios en este campo, nos permiten ampliar las áreas a tratar; lo que a su vez implica una mayor complejidad de los sistemas software asociados a estas tareas, como sucede en sistemas de monitorización o en el Internet de las Cosas (Internet of Things). Asimismo, la necesidad de implementar programas cada vez robustos y eficientes, es decir, que permitan el cómputo de datos a mayor velocidad y de los se obtengan información relevante, ahorrando costes y tiempo, ha propiciado la necesidad cada vez mayor de herramientas que permitan evaluar estos programas. En este contexto, el presente proyecto se centra en extender la herramienta sscheck. Sscheck permite la generación de casos de prueba basados en propiedades de programas escritos en Spark y Spark Streaming. Estos lenguajes forman parte de un mismo marco de código abierto para la computación distribuida en clúster. Dado que las pruebas basadas en propiedades generan datos aleatorios, es difícil reproducir los problemas encontrados en una cierta sesion; por ello, la extensión se centrará en cargar y guardar casos de test en disco mediante el muestreo de datos desde colecciones mayores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta memoria se presenta el diseño y desarrollo de una aplicación en la nube destinada a la compartición de objetos y servicios. El desarrollo de esta aplicación surge dentro del proyecto de I+D+i, SITAC: Social Internet of Things – Apps by and for the Crowd ITEA 2 11020, que trata de crear una arquitectura integradora y un “ecosistema” que incluya plataformas, herramientas y metodologías para facilitar la conexión y cooperación de entidades de distinto tipo conectadas a la red bien sean sistemas, máquinas, dispositivos o personas con dispositivos móviles personales como tabletas o teléfonos móviles. El proyecto innovará mediante la utilización de un modelo inspirado en las redes sociales para facilitar y unificar las interacciones tanto entre personas como entre personas y dispositivos. En este contexto surge la necesidad de desarrollar una aplicación destinada a la compartición de recursos en la nube que pueden ser tanto lógicos como físicos, y que esté orientada al big data. Ésta será la aplicación presentada en este trabajo, el “Resource Sharing Center”, que ofrece un servicio web para el intercambio y compartición de contenido, y un motor de recomendaciones basado en las preferencias de los usuarios. Con este objetivo, se han usado tecnologías de despliegue en la nube, como Elastic Beanstalk (el PaaS de Amazon Web Services), S3 (el sistema de almacenamiento de Amazon Web Services), SimpleDB (base de datos NoSQL) y HTML5 con JavaScript y Twitter Bootstrap para el desarrollo del front-end, siendo Python y Node.js las tecnologías usadas en el back end, y habiendo contribuido a la mejora de herramientas de clustering sobre big data. Por último, y de cara a realizar el estudio sobre las pruebas de carga de la aplicación se ha usado la herramienta ApacheJMeter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Swarms (enxames computacionais), consistindo da integração de sensores e atuadores inteligentes no nosso mundo conectado, possibilitam uma extensão da info-esfera no mundo físico. Nós chamamos esta info-esfera extendida, cíber-física, de Swarm. Este trabalho propõe uma visão de Swarm onde dispositivos computacionais cooperam dinâmica e oportunisticamente, gerando redes orgânicas e heterogêneas. A tese apresenta uma arquitetura computacional do Plano de Controle do Sistema Operacional do Swarm, que é uma camada de software distribuída embarcada em todos os dispositivos que fazem parte do Swarm, responsável por gerenciar recursos, definindo atores, como descrever e utilizar serviços e recursos (como divulgá-los e descobrí-los, como realizar transações, adaptações de conteúdos e cooperação multiagentes). O projeto da arquitetura foi iniciado com uma revisão da caracterização do conceito de Swarm, revisitando a definição de termos e estabelecendo uma terminologia para ser utilizada. Requisitos e desafios foram identificados e uma visão operacional foi proposta. Esta visão operacional foi exercitada com casos de uso e os elementos arquiteturais foram extraídos dela e organizados em uma arquitetura. A arquitetura foi testada com os casos de uso, gerando revisões do sistema. Cada um dos elementos arquiteturais requereram revisões do estado da arte. Uma prova de conceito do Plano de Controle foi implementada e uma demonstração foi proposta e implementada. A demonstração selecionada foi o Smart Jukebox, que exercita os aspectos distribuídos e a dinamicidade do sistema proposto. Este trabalho apresenta a visão do Swarm computacional e apresenta uma plataforma aplicável na prática. A evolução desta arquitetura pode ser a base de uma rede global, heterogênea e orgânica de redes de dispositivos computacionais alavancando a integração de sistemas cíber-físicos na núvem permitindo a cooperação de sistemas escaláveis e flexíveis, interoperando para alcançar objetivos comuns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the intensive use of Technology Information (TI) provide solutions to problems of the high population density, energy conservation and cities management. This produces a newest concept of the city, Smart City. But the inclusion of TI in the city brings associated new problems, specifically the generation of electromagnetic fields from the available and new technological infrastructures installed in the city that did not exist before. This new scenario produces a negative effect on a particular group of the society, as are the group of persons with electromagnetic hypersensitivity pathology. In this work we propose a system that would allow you to detect and prevent the continuous exposure to such electromagnetic fields, without the need to include more devices or infrastructure which would only worsen these effects. Through the use of the architecture itself and Smart City services, it is possible to infer the necessary knowledge to know the situation of the EMF radiation and thus allow users to avoid the areas of greatest conflict. This knowledge, not only allows us to get EMF current map of the city, but also allows you to generate predictions and detect future risk situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, faced with the constant rise of the Smart cities around the world, there is an exponential increase of the use and deployment of information technologies in the cities. The intensive use of Information Technology (IT) in these ecosystems facilitates and improves the quality of life of citizens, but in these digital communities coexist individuals whose health is affected developing or increasing diseases such as electromagnetic hypersensitivity. In this paper we present a monitoring, detection and prevention system to help this group, through which it is reported the rates of electromagnetic radiation in certain areas, based on the information that the own Smart City gives us. This work provides a perfect platform for the generation of predictive models for detection of future states of risk for humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le comunicazioni wireless di Quinta Generazione, le quali è assodato che vadano a ricoprire un ruolo chiave e centrale nel futuro delle comunicazioni mobili, hanno suscitato l’interesse e l’investigazione da parte delle maggiori organizzazioni ed enti di ricerca internazionali. Internet of Things, i cosiddetti Use Cases, gli indici KPI e le tecnologie candidate per lo sviluppo, sono tra gli altri, i maggiori aspetti su cui attualmente la ricerca pone la propria attenzione al fine di poter definire ed implementare la rete di Quinta Generazione. Non da meno, ricevono forte interesse anche una serie d’aspetti legati all’utilizzo delle elevate frequenze, in particolar modo le bande delle onde millimetriche, nello sviluppo delle comunicazioni per sistemi 5G. L’utilizzo delle onde millimetriche nel futuro delle comunicazioni mobili è ad oggi considerato il fulcro della ricerca per l’implementazione dell’ architettura di rete di Quinta Generazione. Lo sviluppo di comunicazioni basate sulle onde millimetriche per i sistemi 5G presentano sia delle opportunità ma anche importanti problematiche. Tra queste ultime, l’elevate attenuazioni registrate nelle bande delle onde millimetriche pongono severi limiti qualora si voglia stabilire una comunicazione a lungo raggio e tale è un aspetto critico che interesse fortemente i vari ambiti della ricerca per poter efficacemente porre le basi per il futuro della comunicazione mobile di Quinta Generazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper looks at the issue of privacy and anonymity through the prism of Scott's concept of legibility i.e. the desire of the state to obtain an ever more accurate mapping of its domain and the actors in its domain. We argue that privacy was absent in village life in the past, and it has arisen as a temporary phenomenon arising from the lack of appropriate technology to make all life in the city legible. Cities have been the loci of creativity for the major part of human civilisation. There is something specific about the illegibility of cities which facilitates creativity and innovation. By providing the technology to catalogue and classify all objects and ideas around us, this leads to a consideration of semantic web technologies, Linked Data and the Internet of Things as unwittingly furthering this ever greater legibility. There is a danger that the over description of a domain will lead to a loss in creativity and innovation. We conclude by arguing that our prime concern must be to preserve illegibility because the survival of some form, any form, of civilisation depends upon it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the technological world has grown by incorporating billions of small sensing devices, collecting and sharing real-world information. As the number of such devices grows, it becomes increasingly difficult to manage all these new information sources. There is no uniform way to share, process and understand context information. In previous publications we discussed efficient ways to organize context information that is independent of structure and representation. However, our previous solution suffers from semantic sensitivity. In this paper we review semantic methods that can be used to minimize this issue, and propose an unsupervised semantic similarity solution that combines distributional profiles with public web services. Our solution was evaluated against Miller-Charles dataset, achieving a correlation of 0.6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This talk, which is based on our newest findings and experiences from research and industrial projects, addresses one of the most relevant challenges for a decade to come: How to integrate the Internet of Things with software, people, and processes, considering modern Cloud Computing and Elasticity principles. Elasticity is seen as one of the main characteristics of Cloud Computing today. Is elasticity simply scalability on steroids? This talk addresses the main principles of elasticity, presents a fresh look at this problem, and examines how to integrate people, software services, and things into one composite system, which can be modeled, programmed, and deployed on a large scale in an elastic way. This novel paradigm has major consequences on how we view, build, design, and deploy ultra-large scale distributed systems.