958 resultados para Interleukin-10 -- antagonists
Resumo:
Plasma microparticles (MPs, <1.5 mum) originate from platelet and cell membrane lipid rafts and possibly regulate inflammatory responses and thrombogenesis. These actions are mediated through their phospholipid-rich surfaces and associated cell-derived surface molecules. The ectonucleotidase CD39/ecto-nucleoside triphosphate diphosphohydrolase1 (E-NTPDase1) modulates purinergic signalling through pericellular ATP and ADP phosphohydrolysis and is localized within lipid rafts in the membranes of endothelial- and immune cells. This study aimed to determine whether CD39 associates with circulating MPs and might further impact phenotype and function. Plasma MPs were found to express CD39 and exhibited classic E-NTPDase ecto-enzymatic activity. Entpd1 (Cd39) deletion in mice produced a pro-inflammatory phenotype associated with quantitative and qualitative differences in the MP populations, as determined by two dimensional-gel electrophoresis, western blot and flow cytometry. Entpd1-null MPs were also more abundant, had significantly higher proportions of platelet- and endothelial-derived elements and decreased levels of interleukin-10, tumour necrosis factor receptor 1 and matrix metalloproteinase 2. Consequently, Cd39-null MP augment endothelial activation, as determined by inflammatory cytokine release and upregulation of adhesion molecules in vitro. In conclusion, CD39 associates with circulating MP and may directly or indirectly confer functional properties. Our data also suggest a modulatory role for CD39 within MP in the exchange of regulatory signals between leucocytes and vascular cells.
Resumo:
OBJECTIVE: To investigate the numerical and functional changes of CD4+CD25(high) regulatory T (Treg) cells during pregnancy and postpartum in patients with ankylosing spondylitis (AS). METHODS: The frequency of CD4+CD25(high) T cells was determined by flow cytometry in 10 pregnant and 5 nonpregnant patients with AS as well as in 14 pregnant and 4 nonpregnant healthy controls. Pregnant individuals were investigated at the third trimester and 8 weeks postpartum. Treg cells and CD4+CD25- effector T (Teff) cells separated by fluorescence-activated cell sorting were stimulated with anti-CD3 and anti-CD28 monoclonal antibodies, alone or in coculture, to investigate proliferation and cytokine secretion. RESULTS: The frequency of CD4+CD25(high) Treg cells was significantly higher during pregnancy than postpartum in both healthy control subjects and patients with AS. In contrast to Treg cells in healthy pregnant women, Treg cells in pregnant women with AS secreted only small amounts of interleukin-10 and showed lower suppression of tumor necrosis factor alpha and interferon-gamma secretion by CD4+CD25- Teff cells. At the postpartum time point, proinflammatory cytokine levels in the Treg/Teff cell cocultures and Teff cell monocultures were significantly higher in patients with AS than in healthy controls. CONCLUSION: Pregnancy influenced the expansion and cytokine secretion of Treg cells in both patients with AS and control subjects. However, the Treg cells of pregnant patients with AS failed to support an antiinflammatory cytokine milieu, thereby possibly contributing to the persistent disease activity of AS during pregnancy.
Resumo:
Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.
Resumo:
Carcinoma of the cervix is causally related to infection with the human papillomavirus (HPV), and T cells play a pivotal role in the immune response of the host to rid itself of HPV infection. Therefore, we assessed the T-cell function of women with HPV-related cervical neoplasia against a superantigen, Staphylococcus enterotoxin B (SEB). Each woman provided a cervical brush specimen for HPV DNA testing and Papanicolaou (Pap) smears for the staging of cervical lesions. They also provided a blood specimen for determination of the ability of CD4(+) T and CD8(+) T cells to synthesize Th1 (interleukin-2 [IL-2], gamma interferon [IFN-gamma], and tumor necrosis factor alpha [TNF-alpha]) and Th2 (IL-10) cytokines in response to activation with SEB. Compared with control subjects with self-attested negative Pap smears, women with high-grade squamous intraepithelial lesions (HSIL) had significantly lower percentages of activated CD4(+) T cells that produced IL-2 (P = 0.045), IFN-gamma (P = 0.040), and TNF-alpha (P = 0.015) and a significantly lower percentage of activated CD8(+) T cells that produced IL-2 (P < 0.01). These data indicate that women with HPV-related cervical HSIL show a decrease in Th1 cytokine production by activated CD4(+) T cells and suggested that compromised T-helper functions may negatively impact the function of cytotoxic CD8(+) T cells.
Resumo:
Matrix metalloproteinase-9 (MMP-9) cleaves collagen, allowing leukocytes to traffic toward the vasculature and the lymphatics. When MMP-9 is unregulated by tissue inhibitor of metalloproteinase-1 (TIMP-1), this can lead to tissue destruction. Dendritic cells (DCs) infiltrate the oral mucosa increasingly in chronic periodontitis, characterized by infection with several pathogens including Porphyromonas gingivalis. In this study, human monocyte-derived DCs were pulsed with different doses of lipopolysaccharide of P. gingivalis 381 and of Escherichia coli type strain 25922, as well as whole live isogenic fimbriae-deficient mutant strains of P. gingivalis 381. Levels of induction of MMP-9 and TIMP-1, as well as interleukin-10 (IL-10), which reportedly inhibits MMP-9 induction, were measured by several approaches. Our results reveal that lipopolysaccharide of P. gingivalis, compared with lipopolysaccharide from E. coli type strain 25922, is a relatively potent inducer of MMP-9, but a weak inducer of TIMP-1, contributing to a high MMP-9/TIMP-1 ratio.Whole live P. gingivalis strain 381, major fimbriae mutant DPG-3 and double mutant MFB were potent inducers of MMP-9, but minor fimbriae mutant MFI was not. MMP-9 induction was inversely proportional to IL-10 induction. These results suggest that lipopolysaccharide and the minor and the major fimbriae of P. gingivalis may play distinct roles in induction by DCs of MMP-9, a potent mediator of local tissue destruction and leukocyte trafficking.
Resumo:
Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^
Resumo:
Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression.
Resumo:
Different cytokines are secreted in response to specific microbial molecules referred to as pathogen associated molecular patterns (PAMPs). Interleukin 6 (IL6) and interleukin 10 (IL10), both secreted by macrophages and lymphocytes, play a central role in the immunological response. In this work we obtained the genomic structure and complete DNA sequence of the porcine IL6 and IL10 genes and identified polymorphisms in the genomic sequences of these genes on a panel of ten different pig breeds. Comparative intra- and interbreed sequence analysis revealed a total of eight polymorphisms in the porcine IL6 gene and 21 in the porcine IL10 gene, which include single nucleotide polymorphisms (SNPs) and insertion deletion polymorphisms (indels). Additionally, the chromosomal localization of the IL10 gene was determined by FISH and RH mapping.
Resumo:
PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.
Resumo:
Dermal exposure to jet fuel suppresses the immune response. Immune regulatory cytokines, and biological modifiers, including platelet activating factor, prostaglandin E2, and interleukin-10 have all been implicated in the pathway leading to immunosuppression. It is estimated that approximately 260 different hydrocarbons are found in JP-8 (jet propulsion-8) jet fuel, and the identity of the immunotoxic compound is not known. The recent availability of synthetic jet fuel (S-8), which is devoid of aromatic hydrocarbons, made it feasible to design experiments to test the hypothesis that the aromatic hydrocarbons are responsible for jet fuel induced immune suppression. Applying S-8 to the skin of mice does not up-regulate the expression of epidermal cyclooxygenase-2 nor does it induce immune suppression. Adding back a cocktail of 7 of the most prevalent aromatic hydrocarbons found in jet fuel to S-8 up-regulated cyclooxygenase-2 expression and induced immune suppression. Cyclooxygenase-2 induction can be initiated by reactive oxygen species (ROS). JP-8 treated keratinocytes increased ROS production, S-8 did not. Antioxidant pre-treatment blocked jet fuel induced immune suppression and cyclooxygenase-2 up-regulation. Accumulation of reactive oxygen species induces oxidant stress and affects activity of ROS sensitive transcription factors. JP-8 induced activation of NFκB while S-8 did not. Pre-treatment with antioxidants blocked activation of NFκB and parthenolide, an NFκB inhibitor, blocked jet fuel induced immune suppression and cyclooxygenase-2 expression in skin of treated mice. p65 siRNA transfected keratinocytes demonstrated NFκB is critically involved in jet fuel induced COX-2 expression. These findings clearly implicate the aromatic hydrocarbons found in jet fuel as the agents responsible for inducing immune suppression, in part by the production of reaction oxygen species, NFκB dependent up-regulation of cyclooxygenase-2, and the production of immune regulatory factors and cytokines. ^
Resumo:
Macrophages become activated by bacterial endotoxin (lipopolysaccharide) and other stimuli to release proinflammatory cytokines and NO. To prevent release of toxic or potentially lethal quantities of these factors, the state of macrophage activation is counter-regulated by anti-inflammatory mediators (e.g., glucocorticoid hormones, interleukin 10, and transforming growth factor type β). Fetuin, a negative acute-phase protein, recently was implicated as an anti-inflammatory mediator, because it is required for macrophage deactivation by spermine. In the present studies, we found that fetuin is necessary for macrophages to respond to CNI-1493, a tetravalent guanylhydrazone inhibitor of p38 mitogen-activated protein kinase phosphorylation. Fetuin dose-dependently increases macrophage uptake of CNI-1493, which can be specifically inhibited by anti-human fetuin antibodies. Anti-human fetuin antibodies render primary human peripheral blood mononuclear cells insensitive to deactivation by CNI-1493. Thus, macrophages use fetuin as an opsonin for cationic-deactivating molecules, both endogenous (e.g., spermine) and pharmacologic (e.g., CNI-1493). This role of fetuin as an opsonic participant in macrophage-deactivating mechanisms has implications for understanding and manipulating the innate immune response.
Resumo:
It has been demonstrated that CD8+ T cells produce a soluble factor(s) that suppresses human immunodeficiency virus (HIV) replication in CD4+ T cells. The role of soluble factors in the suppression of HIV replication in monocyte/macrophages (M/M) has not been fully delineated. To investigate whether a CD8+ T-cell-derived soluble factor(s) can also suppress HIV infection in the M/M system, primary macrophages were infected with the macrophage tropic HIV-1 strain Ba-L. CD8+ T-cell-depleted peripheral blood mononuclear cells were also infected with HIV-1 IIIB or Ba-L. HIV expression from the chronically infected macrophage cell line U1 was also determined in the presence of CD8+ T-cell supernatants or β-chemokines. We demonstrate that: (i) CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV replication in the M/M system; (ii) antibodies to regulated on activation normal T-cell expressed and Secreted (RANTES), macrophage inflammatory protein 1α (MIP-1α) and MIP-1β did not, whereas antibodies to interleukin 10, interleukin 13, interferon α, or interferon γ modestly reduced anti-HIV activity of the CD8+ T-cell supernatants; and (iii) the CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV-1 IIIB replication in peripheral blood mononuclear cells as well as HIV expression in U1 cells. These results suggest that HIV-suppressor activity of CD8+ T cells is a multifactorial phenomenon, and that RANTES, MIP-1α, and MIP-1β do not account for the entire scope of CD8+ T-cell-derived HIV-suppressor factors.
Resumo:
In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB.
Resumo:
To explain the pathogenesis of autoimmunity, we hypothesize that following an infection the immune response spreads to tissue-specific autoantigens in genetically predisposed individuals eventually determining progression to disease. Molecular mimicry between viral and self antigens could, in some instances, initiate autoimmunity. Local elicitation of inflammatory cytokines following infection probably plays a pivotal role in determining loss of functional tolerance to self autoantigens and the destructive activation of autoreactive cells. We also describe the potential role of interleukin 10, a powerful B-cell activator, in increasing the efficiency of epitope recognition, that could well be crucial to the progression toward disease.
Resumo:
Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.