979 resultados para Interface Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apical cytoplasm of airway epithelium (AE) contains abundant labile zinc (Zn) ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG)-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomistic simulations of molecular adsorption onto inorganic substrates under aqueous conditions can be used to guide the rational design of new materials, fabricated using biomimetic methods. The success of such work depends critically on the model used. Here, we investigate the impact of using a rigid structural model of the (0 1 1) ?-quartz surface, over a fully flexible model, on the calculated free energy change in the adsorption of a single molecule of benzene (a simple analogue of the amino acid phenylalanine) from liquid water. Subtle differences in the mobility of the adsorbate close to the surface result in the free energy of adsorption being overestimated by the rigid model, relative to the fully flexible case. Moreover, we find that the distribution of bound configurations of the adsorbate at their respective free energy minima is different between the two models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological materials are hierarchically organized complex composites, which embrace multiple practical functionalities. As an example, the wild silkworm cocoon provides multiple protective functions against environmental and physical hazards, promoting the survival chance of moth pupae that resides inside. In the present investigation, the microstructure and thermal property of the Chinese tussah silkworm (Antheraea pernyi) cocoon in both warm and cold environments under windy conditions have been studied by experimental and numerical methods. A new computational fluid dynamics model has been developed according to the original fibrous structure of the Antheraea pernyi cocoon to simulate the unique heat transfer process through the cocoon wall. The structure of the Antheraea pernyi cocoon wall can promote the disorderness of the interior air, which increases the wind resistance by stopping most of the air flowing into the cocoon. The Antheraea pernyi cocoon is wind-proof due to the mineral crystals deposited on the outer layer surface and its hierarchical structure with low porosity and high tortuosity. The research findings have important implications to enhancing the thermal function of biomimetic protective textiles and clothing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most common means of gold nanoparticle (AuNP) biofunctionalization involves the manipulation of precursor citrate-capped AuNPs via ligand displacement. However, the molecular-level structural characteristics of the citrate overlayer adsorbed at the aqueous Au interface at neutral pH remain largely unknown. Access to atomistic-scale details of these interfaces will contribute much needed insight into how AuNPs can be manipulated and exploited in aqueous solution. Here, the structures of such citrate overlayers adsorbed at the aqueous Au(111) interface at pH 7 are predicted and characterized using atomistic molecular dynamics simulations, for a range of citrate surface densities. We find that the overlayers are disordered in the surface density range considered, and that many of their key characteristics are invariant with surface density. In particular, we predict the overlayers to have 3-D, rather than 2-D, morphologies, with the anions closest to the gold surface being oriented with their carboxylate groups pointing away from the surface. We predict both striped and island morphologies for our overlayers, depending on the citrate surface density, and in all cases we find bare patches of the gold surface are present. Our simulations suggest that both citrate-gold adsorption and citrate-counterion pairing contribute to the stability of these citrate overlayer morphologies. We also calculate the free energy of adsorption at the aqueous Au(111) interface of a single citrate molecule, and compare this with the corresponding value for a single arginine molecule. These findings enable us to predict the conditions under which ligand displacement of surface-adsorbed citrate by arginine may take place. Our findings represent the first steps toward elucidating a more elaborate, detailed atomistic-scale model relating to the biofunctionalization of citrate-capped AuNPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results of atomistic molecular dynamics simulations of an industrially-relevant, exemplar triacylglycerol (TAG), namely tristearin (TS), under aqueous conditions, at different temperatures and in the presence of an anionic surfactant, sodium dodecylbenzene sulphonate (SDBS). We predict the TS bilayers to be stable and in a gel phase at temperatures of 350 K and below. At 370 K the lipid bilayer was able to melt, but does not feature a stable liquid-crystalline phase bilayer at this elevated temperature. We also predict the structural characteristics of TS bilayers in the presence of SDBS molecules under aqueous conditions, where surfactant molecules are found to spontaneously insert into the TS bilayers. We model TS bilayers containing different amounts of SDBS, with the presence of SDBS imparting only a moderate effect on the structure of the system. Our study represents the first step in applying atomistic molecular dynamics simulations to the investigation of TAG-aqueous interfaces. Our results suggest that the CHARMM36 force-field appears suitable for the simulation of such systems, although the phase behaviour of the system may be shifted to lower temperatures than is the case for the actual system. Our findings provide a foundation for further simulation studies of the TS-aqueous interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comprehensive analytical subdomain model together with its field solutions for predicting the magnetic field distributions in surface-mounted permanent magnet (PM) machines. The tooth tips and slotting effects during open-circuit, armature reaction, and on-load conditions are considered when deriving the model and developing its solutions. The model derivations and field solutions are extended from a previous model, and can be applied to PM machines with any combinations of slot and pole numbers and any magnetization patterns in the magnets. This model is initially formulated according to Laplace's and Poisson's equations in 2-D polar coordinates by the separation of variables technique in four subdomains, such as magnet, airgap, winding slots, and slot-openings. The field solution of each subdomain is obtained applying the appropriate boundary conditions and interface conditions between every two subdomains, respectively, which can precisely account for the mutual influence between slots. Finite element analysis (FEA) is later deployed to validate the analytical results in a surface-mounted PM machine that has nonoverlapping winding arrangement. For validation purposes, PM machines having 3-slot/2-pole with parallel magnetization and 12-slot/10-pole with either parallel or radial magnetizations are used for comparisons. Computation of global quantities for the motor which include the phase back-EMF and cogging torque is also included. The results indicate that the proposed analytical model can accurately predict the magnetic field distributions in each subdomain and the motor's global quantities, which are in good agreement with those obtained from the FEA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing river geospatial data. Eventually, river geospatial data has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. In this study a plan was suggested both to respond to these changes in the information envirnment and to provide a future Smart River-based river information service by understanding the current state of river geospatial data model, improving, redesigning the database. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system, capable of adapting to the changes of a river management paradigm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this thesis is to discuss the development and modeling of an interface architecture to be employed for interfacing analog signals in mixed-signal SOC. We claim that the approach that is going to be presented is able to achieve wide frequency range, and covers a large range of applications with constant performance, allied to digital configuration compatibility. Our primary assumptions are to use a fixed analog block and to promote application configurability in the digital domain, which leads to a mixed-signal interface. The use of a fixed analog block avoids the performance loss common to configurable analog blocks. The usage of configurability on the digital domain makes possible the use of all existing tools for high level design, simulation and synthesis to implement the target application, with very good performance prediction. The proposed approach utilizes the concept of frequency translation (mixing) of the input signal followed by its conversion to the ΣΔ domain, which makes possible the use of a fairly constant analog block, and also, a uniform treatment of input signal from DC to high frequencies. The programmability is performed in the ΣΔ digital domain where performance can be closely achieved according to application specification. The interface performance theoretical and simulation model are developed for design space exploration and for physical design support. Two prototypes are built and characterized to validate the proposed model and to implement some application examples. The usage of this interface as a multi-band parametric ADC and as a two channels analog multiplier and adder are shown. The multi-channel analog interface architecture is also presented. The characterization measurements support the main advantages of the approach proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple model is developed for the admittance of a metal-insulator-semiconductor (MIS) capacitor which includes the effect of a guard ring surrounding the Ohmic contact to the semiconductor. The model predicts most of the features observed in a MIS capacitor fabricated using regioregular poly(3-hexylthiophene) as the active semiconductor and polysilsesquioxane as the gate insulator. In particular, it shows that when the capacitor is driven into accumulation, the parasitic transistor formed by the guard ring and Ohmic contact can give rise to an additional feature in the admittance-voltage plot that could be mistaken for interface states. When this artifact and underlying losses in the bulk semiconductor are accounted for, the remaining experimental feature, a peak in the loss-voltage plot when the capacitor is in depletion, is identified as an interface (or near interface) state of density of similar to 4 x 10(10) cm(-2) eV(-1). Application of the model shows that exposure of a vacuum-annealed device to laboratory air produces a rapid change in the doping density in the channel region of the parasitic transistor but only slow changes in the bulk semiconductor covered by the gold Ohmic contact. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a theoretical study of magnetic bilayers composed by a ferromagnetic film grown in direct contact on an antiferromagnetic one. We have investigated the interface effects in this systems due to the interfilms coupling. We describe the interface effects by a Heisenberg like coupling with an additional unidirectional anisotropy. In the first approach we assume that the magnetic layers are thick enough to be described by the bulk parameters and they are coupled through the interaction between the magnetic moments located at the interface. We use this approach to calculate the modified dynamical response of each material. We use the magnetic permeability of the layers (with corrections introduced by interface interactions) to obtain a correlation between the interface characteristics and the physical behavior of the magnetic excitations propagating in the system. In the second model, we calculated an effective susceptibility of the system considering a nearly microscopical approach. The dynamic response obtained by this approach was used to study the modifications in the spectrum of the polaritons and its consequences on the attenuated total reflection (ATR). In addition, we have calculated the oblique reflectivity. We compare our result with those obtained for the dispersion relation of the magnetostatic modes in these systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injection-limited operation is identified in thin-film, alpha-NPD-based diodes. A detailed model for the impedance of the injection process is provided which considers the kinetics of filling/releasing of interface states as the key factor behind the injection mechanism. The injection model is able to simultaneously account for the steady-state, current-voltage (J-V) characteristics and impedance response. and is based on the sequential injection of holes mediated by energetically distributed surface states at the metal-organic interface. The model takes into account the vacuum level offset caused by the interface dipole, along with the partial shift of the interface level distribution with bias voltage. This approach connects the low-frequency (similar to 1 Hz) capacitance spectra, which exhibits a transition between positive to negative values, to the change in the occupancy of interface states with voltage. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 5 x 10(12) cm(-2)), which exhibit a Gaussian-like distribution. A kinetically determined hole barrier is calculated at levels located similar to 0.4 eV below the contact work function. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacitance spectra of thin (< 200 nm) Alq(3) electron-only devices have been measured as a function of bias voltage. Capacitance spectra exhibit a flat response at high frequencies (> 10(3) Hz) and no feature related to the carrier transit time is observed. Toward low frequencies the spectra reach a maximum and develop a negative excess capacitance. Capacitance response along with current-voltage (J-V) characteristics are interpreted in terms of the injection of electrons mediated by surface states at the metal organic interface. A detailed model for the impedance of the injection process is provided that highlights the role of the filling/releasing kinetics of energetically distributed interface states. This approach connects the whole capacitance spectra to the occupancy of interface states, with no additional information about bulk trap levels. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 1.5 x 10(12) cm (2)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)