879 resultados para Inflation targeting
Resumo:
The application of microbeams is providing new insights into the actions of radiation at the cell and tissue levels. So far, this has been achieved exclusively through the use of collimated charged particles. One alternative is to use ultrasoft X rays, focused by X-ray diffractive optics. We have developed a unique facility that uses 0.2-0.8-mm-diameter zone plates to focus ultrasoft X rays to a beam of less than 1 mum diameter. The zone plate images characteristic K-shell X rays of carbon or aluminum, generated by focusing a beam of 5-10 keV electrons onto the appropriate target. By reflecting the X rays off a grazing-incidence mirror, the contaminating bremsstrahlung radiation is reduced to 2%. The focused X rays are then aimed at selected subcellular targets using rapid automated cell-finding and alignment procedures; up to 3000 cells per hour can be irradiated individually using this arrangement. (C) 2001 by Radiation Research Society.
Resumo:
We propose a data flow based run time system as an efficient tool for supporting execution of parallel code on heterogeneous architectures hosting both multicore CPUs and GPUs. We discuss how the proposed run time system may be the target of both structured parallel applications developed using algorithmic skeletons/parallel design patterns and also more "domain specific" programming models. Experimental results demonstrating the feasibility of the approach are presented. © 2012 World Scientific Publishing Company.
Resumo:
Varying intensities of nurse-mediated health education advice were administered to subjects over a three-month period. Mean serum total cholesterol was calculated for each group at the outset and completion of the study. A multidimensional health locus of control (MHLC) scales questionnaire was self-completed by subjects at the outset. A highly significant association between internality and reduction in serum total cholesterol in the high-intensity intervention group was observed. The completion of a MHLC scale questionnaire may assist health professionals in identifying which subjects may most benefit from high-intensity health education advice when raised serum total cholesterol is prevalent.
Resumo:
KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1a (HIF-1a). HIF-1a is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1a. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1a in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1a levels in KNK437-treated cells. This suggested that the absence of HIF-1a in hypoxic cells was not due to the enhanced protein degradation. HIF-1a is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1a mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1a levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.
Resumo:
Functional genomics have not been reported for Opisthorchis viverrini or the related fish-borne fluke, Clonorchis sinensis. Here we describe the introduction by square wave electroporation of Cy3-labeled small RNA into adult O. viverrini worms. Adult flukes were subjected to square wave electroporation employing a single pulse for 20 ms of 125V in the presence of 50 µg/ml of Cy3-siRNA. The parasites tolerated this manipulation and, at 24 and 48 h after electroporation, fluorescence from the Cy3-siRNA was evident throughout the parenchyma of the worms, with strong fluorescence evident in the guts and reproductive organs of the adult worms. Second, other worms were treated using the same electroporation settings with double stranded RNA targeting an endogenous papain-like cysteine protease, cathepsin B. This manipulation resulted in a significant reduction in specific mRNA levels encoding cathepsin B, and a significant reduction in cathepsin B activity against the diagnostic peptide, Z-Arg-Arg-AMC. This appears to be the first report of introduction of reporter genes into O. viverrini and the first report of experimental RNA interference (RNAi) in this fluke. The findings indicated the presence of an intact RNAi pathway in these parasites which, in turn, provides an opportunity to probe gene functions in this neglected tropical disease pathogen.
Resumo:
In 1997 the Irish government adopted the National Anti-Poverty Strategy (NAPS), a global target for the reduction of poverty which illuminates a range of issues relating to official poverty targets. The Irish target is framed in terms of a relative poverty measure incorporating both relative income and direct measures of deprivation based on data on the extent of poverty from 1994. Since 1994 Ireland has experienced an unprecedented period of economic growth that makes it particularly important to assess whether the target has been achieved, but in doing so we cannot avoid asking some underlying questions about how poverty should be measured and monitored over time. After briefly outlining the nature of the NAPS measure, this article examines trends in poverty in Ireland between 1987 and 1997, Results show that the relative income and deprivation components of the NAPS measure reveal differential trends with increasing relative income poverty, but decreasing deprivation. However, this differential could be due to the fact that the direct measures of deprivation upon which NAPS is based have not been updated to take account of changes in real living standards and increasing expectations. To test whether this is so, we examine the extent to which expectations about living standards and the structure of deprivation have changed over time using confirmatory factor analysis and tests of criterion validity using different definitions of deprivation. Results show that the combined income and deprivation measure, as originally constituted, continues to identify a set of households experiencing generalised deprivation resulting from a lack of resources.
Resumo:
Lipoxidation reactions and the subsequent accumulation of advanced lipoxidation end products (ALEs) have been implicated in the pathogenesis of many of the leading causes of visual impairment. Here, we begin by outlining some of the major lipid aldehydes produced through lipoxidation reactions, the ALEs formed upon their reaction with proteins, and the endogenous aldehyde metabolizing enzymes involved in protecting cells against lipoxidation mediated damage. Discussions are subsequently focused on the clinical and experimental evidence supporting the contribution of lipid aldehydes and ALEs in the development of ocular diseases. From these discussions, it is clear that inhibition of lipoxidation reactions and ALE formation could represent a new therapeutic avenue for the treatment of a broad range of ocular disorders. Current and emerging pharmacological strategies to prevent or neutralize the effects of lipid aldehydes and ALEs are therefore considered, with particular emphasis on the potential of these drugs for treatment of diseases of the eye.
Resumo:
ABSTRACT: Bone-seeking radionuclides including samarium-153 ethylene diamine tetramethylene phosphonate and strontium-89 have been used for decades in the palliation of pain from bone metastases especially from prostate cancer. Emerging evidence of improved survival in metastatic castration-resistant prostate cancer (CRPC) with the first-in-class a-radionuclide, radium-223 (Ra) has rekindled interest in the role of bone-seeking radionuclide therapy.We review the literature for randomized controlled trials of bone-seeking radionuclides and explore some of the issues regarding the optimal use of these agents. In particular, we discuss dose, dose rate, radiobiology, and quality of radiation and postulate on potential future directions in particular combination schedules. ß-Emitting, bone-seeking radionuclides have proven ability to control pain in prostate cancer metastatic to bone with pain response rates in the order of 60% to 70% when used as single agents. Most of the published trials were underpowered to detect differences in survival; however, there is evidence of the potential for disease modification when these agents are used in combination with chemotherapy or in multiple cycles.Data from the recent phase III ALSYMPCA trial that compared Ra to placebo in symptomatic CRPC demonstrate a significant improvement in median overall survival of 3.6 months for patients with symptomatic CRPC metastatic to bone treated with 6 cycles of the a-emitting radionuclide Ra compared with placebo. The success of Ra in improving survival in CRPC will lead this agent to become part of the treatment paradigm for this disease, and with such an excellent safety profile, Ra has huge potential in combination strategies as well as for use earlier in the natural history of metastatic prostate cancer.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Resumo:
FastFlow is a structured parallel programming framework targeting shared memory multi-core architectures. In this paper we introduce a FastFlow extension aimed at supporting also a network of multi-core workstations. The extension supports the execution of FastFlow programs by coordinating-in a structured way-the fine grain parallel activities running on a single workstation. We discuss the design and the implementation of this extension presenting preliminary experimental results validating it on state-of-the-art networked multi-core nodes. © 2013 Springer-Verlag.