970 resultados para Industry energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Prepared for Office of Nuclear Power Systems, Assistant Secretary for Nuclear Energy, U.S. Department of Energy and the Institute of Nuclear Power Operations."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"PB-261 983."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bibliographical footnotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"ART-302-AX3204-1"--P. [4] of cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reinvestigates the energy consumption-GDP growth nexus in a panel error correction model using data on 20 net energy importers and exporters from 1971 to 2002. Among the energy exporters, there was bidirectional causality between economic growth and energy consumption in the developed countries in both the short and long run, while in the developing countries energy consumption stimulates growth only in the short run. The former result is also found for energy importers and the latter result exists only for the developed countries within this category. In addition, compared to the developing countries, the developed countries' elasticity response in terms of economic growth from an increase in energy consumption is larger although its income elasticity is lower and less than unitary. Lastly. the implications for energy policy calling for a more holistic approach are discussed. (c) 2006 Elsevier Ltd. All rights reserved.