835 resultados para Improved equipment
Resumo:
Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.
Resumo:
Hepatitis C virus (HCV) infections are the major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma worldwide. Both spontaneous and treatment-induced clearance of HCV depend on genetic variation within the interferon-lambda locus, but until now no clear causal relationship has been established. Here we demonstrate that an amino-acid substitution in the IFNλ4 protein changing a proline at position 70 to a serine (P70S) substantially alters its antiviral activity. Patients harbouring the impaired IFNλ4-S70 variant display lower interferon-stimulated gene (ISG) expression levels, better treatment response rates and better spontaneous clearance rates, compared with patients coding for the fully active IFNλ4-P70 variant. Altogether, these data provide evidence supporting a role for the active IFNλ4 protein as the driver of high hepatic ISG expression as well as the cause of poor HCV clearance.
Resumo:
BACKGROUND: Three-dimensional (3D) navigator-gated and prospectively corrected free-breathing coronary magnetic resonance angiography (MRA) allows for submillimeter image resolution but suffers from poor contrast between coronary blood and myocardium. Data collected over >100 ms/heart beat are also susceptible to bulk cardiac and respiratory motion. To address these problems, we examined the effect of a T2 preparation prepulse (T2prep) for myocardial suppression and a shortened acquisition window on coronary definition. METHODS AND RESULTS: Eight healthy adult subjects and 5 patients with confirmed coronary artery disease (CAD) underwent free-breathing 3D MRA with and without T2prep and with 120- and 60-ms data-acquisition windows. The T2prep resulted in a 123% (P<0. 001) increase in contrast-to-noise ratio (CNR). Coronary edge definition was improved by 33% (P<0.001). Acquisition window shortening from 120 to 60 ms resulted in better vessel definition (11%; P<0.001). Among patients with CAD, there was a good correspondence with disease. CONCLUSIONS: Free-breathing, T2prep, 3D coronary MRA with a shorter acquisition window resulted in improved CNR and better coronary artery definition, allowing the assessment of coronary disease. This approach offers the potential for free-breathing, noninvasive assessment of the major coronary arteries.
Resumo:
Selected strains of fluorescent pseudomonads suppress various plant diseases caused by soil-borne pathogenic fungi, by a blend of several mechanisms including aggressive root colonization, antibiosis, competition for nutrients, induction of resistance in the plant, and enzymatic attack of the pathogen. These traits are amenable to genetic analysis and, therefore, to modification by genetic engineering. Biocontrol activities of Pseudomonas spp. have been enhanced in two ways: (i) by overexpression of traits known to involved in diseaese suppression, and (ii) by introduction of additional beneficial traits into strains having basal biocontrol activities. Under experimental conditions in microcosms, a number of genetically modified Pseudomonas strains have given promising results. It remains to be seen whether such strains will be superior to the best naturally occurring strains, applied singly or in combination, under greenhouse and field conditions.
Resumo:
BACKGROUND/AIM: Excitation-contraction coupling is modulated by nitric oxide (NO) which otherwise has either beneficial or detrimental effects on myocardial function during hypoxia-reoxygenation. This work aimed at characterizing the variations of electromechanical delay (EMD) induced by anoxia-reoxygenation within the developing heart and determining whether atrial and ventricular EMD are modulated by NO to the same extent. METHODS: Hearts of 4 or 4.5-day-old chick embryos were excised and submitted in vitro to normoxia (45 min), anoxia (30 min) and reoxygenation (60 min). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout experiment. Anoxia-reoxygenation-induced chrono-, dromo-and inotropic disturbances and changes in EMD in atrium (EMDa) and ventricle (EMDv) were investigated in control hearts and in hearts exposed to 0.1, 1, 10, 50 and 100 microM of DETA-NONOate (a NO donating agent) or to 50 microM of L-NAME (a NOS inhibitor). RESULTS: Under normoxia, heart rate, PR interval, ventricular shortening velocity, EMDa and EMDv were similar in control, L-NAME-treated and DETA-NONOate-treated hearts. Under anoxia, cardiac activity became markedly erratic within less than 10 min in all groups. At the onset of reoxygenation, EMDv was increased by about 300% with respect to the preanoxic value while EMDa did not vary significatively. Compared to control conditions, L-NAME or DETA-NONOate had no influence on the negative chrono-, dromo- and inotropic effects induced by anoxia-reoxygenation. However, L-NAME prolonged EMDv during anoxia and delayed EMDv recovery during reoxygenation while 100 microM DETA-NONOate had the opposite effects. EMDa was neither affected by NOS inhibitor nor NO donor. At the end of reoxygenation, all the investigated parameters returned to their basal values. CONCLUSION: This work provides evidence that a NO-dependent pathway is involved in regulation of the ventricular excitation-contraction coupling in the anoxic-reoxygenated developing heart.
Resumo:
IL-2 immunotherapy is an attractive treatment option for certain metastatic cancers. However, administration of IL-2 to patients can lead, by ill-defined mechanisms, to toxic adverse effects including severe pulmonary edema. Here, we show that IL-2-induced pulmonary edema is caused by direct interaction of IL-2 with functional IL-2 receptors (IL-2R) on lung endothelial cells in vivo. Treatment of mice with high-dose IL-2 led to efficient expansion of effector immune cells expressing high levels of IL-2Rbetagamma, including CD8(+) T cells and natural killer cells, which resulted in a considerable antitumor response against s.c. and pulmonary B16 melanoma nodules. However, high-dose IL-2 treatment also affected immune cell lineage marker-negative CD31(+) pulmonary endothelial cells via binding to functional alphabetagamma IL-2Rs, expressed at low to intermediate levels on these cells, thus causing pulmonary edema. Notably, IL-2-mediated pulmonary edema was abrogated by a blocking antibody to IL-2Ralpha (CD25), genetic disruption of CD25, or the use of IL-2Rbetagamma-directed IL-2/anti-IL-2 antibody complexes, thereby interfering with IL-2 binding to IL-2Ralphabetagamma(+) pulmonary endothelial cells. Moreover, IL-2/anti-IL-2 antibody complexes led to vigorous activation of IL-2Rbetagamma(+) effector immune cells, which generated a dramatic antitumor response. Thus, IL-2/anti-IL-2 antibody complexes might improve current strategies of IL-2-based tumor immunotherapy.
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2009 as required by Iowa Code section 307.47. The report is sorted by Iowa Department of Transportation accounting object codes.
Resumo:
Attached is the Equipment and Vehicle Purchase Report for Fiscal Year 2009 as required by Iowa Code section 307.47. The report is sorted by Iowa Department of Transportation accounting object codes.
Resumo:
Recent data have implicated thrombospondin-1 (TSP-1) signaling in the acute neuropathological events that occur in microvascular endothelial cells (ECs) following spinal cord injury (SCI) (Benton et al., 2008b). We hypothesized that deletion of TSP-1 or its receptor CD47 would reduce these pathological events following SCI. CD47 is expressed in a variety of tissues, including vascular ECs and neutrophils. CD47 binds to TSP-1 and inhibits angiogenesis. CD47 also binds to the signal regulatory protein (SIRP)α and facilitates neutrophil diapedesis across ECs to sites of injury. After contusive SCI, TSP-1(-/-) mice did not show functional improvement compared to wildtype (WT) mice. CD47(-/-) mice, however, exhibited functional locomotor improvements and greater white matter sparing. Whereas targeted deletion of either CD47 or TSP-1 improved acute epicenter vascularity in contused mice, only CD47 deletion reduced neutrophil diapedesis and increased microvascular perfusion. An ex vivo model of the CNS microvasculature revealed that CD47(-/-)-derived microvessels (MVs) prominently exhibit adherent WT or CD47(-/-) neutrophils on the endothelial lumen, whereas WT-derived MVs do not. This implicates a defect in diapedesis mediated by the loss of CD47 expression on ECs. In vitro transmigration assays confirmed the role of SIRPα in neutrophil diapedesis through EC monolayers. We conclude that CD47 deletion modestly, but significantly, improves functional recovery from SCI via an increase in vascular patency and a reduction of SIRPα-mediated neutrophil diapedesis, rather than the abrogation of TSP-1-mediated anti-angiogenic signaling.
Resumo:
PURPOSE: Multinuclear magnetic resonance spectroscopy and imaging require a radiofrequency probe capable of transmitting and receiving at the proton and non-proton frequencies. To minimize coupling between probe elements tuned to different frequencies, LC (inductor-capacitor) traps blocking current at the (1) H frequency can be inserted in non-proton elements. This work compares LC traps with LCC traps, a modified design incorporating an additional capacitor, enabling control of the trap reactance at the low frequency while maintaining (1) H blocking. METHODS: Losses introduced by both types of trap were analysed using circuit models. Radiofrequency coils incorporating a series of LC and LCC traps were then built and evaluated at the bench. LCC trap performance was then confirmed using (1) H and (13) C measurements in a 7T human scanner. RESULTS: LC and LCC traps both effectively block interaction between non-proton and proton coils at the proton frequency. LCC traps were found to introduce a sensitivity reduction of 5±2%, which was less than half of that caused by LC traps. CONCLUSION: Sensitivity of non-proton coils is critical. The improved trap design, incorporating one extra capacitor, significantly reduces losses introduced by the trap in the non-proton coil. Magn Reson Med 72:584-590, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
Attached is the Iowa Department of Transportation's Equipment and Vehicle Purchase Report for Fiscal Year 2010 as required by Iowa Code section 307.47.
Resumo:
BACKGROUND AND PURPOSE: Endovascular treatment of wide-neck bifurcation aneurysms often results in incomplete occlusion or aneurysm recurrence. The goals of this study were to compare results of coil embolization with or without the assistance of self-expandable stents and to examine how stents may influence neointima formation. MATERIALS AND METHODS: Wide-neck bifurcation aneurysms were constructed in 24 animals and, after 4-6 weeks, were randomly allocated to 1 of 5 groups: 1) coil embolization using the assistance of 1 braided stent (n = 5); 2) coil embolization using the assistance of 2 braided stents in a Y configuration (n = 5); 3) coil embolization without stent assistance (n = 6); 4) Y-stenting alone (n = 4); and 5) untreated controls (n = 4). Angiographic results were compared at baseline and at 12 weeks, by using an ordinal scale. Neointima formation at the neck at 12 weeks was compared among groups by using a semiquantitative grading scale. Bench studies were performed to assess stent porosities. RESULTS: Initial angiographic results were improved with single stent-assisted coiling compared with simple coiling (P = .013). Angiographic results at 12 weeks were improved with any stent assistance (P = .014). Neointimal closure of the aneurysm neck was similar with or without stent assistance (P = .908), with neointima covering coil loops but rarely stent struts. Y-stent placement alone had no therapeutic effect. Bench studies showed that porosities can be decreased with stent compaction, but a relatively stable porous transition zone was a limiting factor. CONCLUSIONS: Stent-assisted coiling may improve results of embolization by allowing more complete initial coiling, but these high-porosity stents did not provide a scaffold for more complete neointimal closure of aneurysms.
Resumo:
The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.