953 resultados para Immune Function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of Th1-type cytokines is associated with strong cell-mediated immunity while Th2-type cytokines are typically involved in the generation of humoral immune responses. In mice vaccinated a single time (1X) with attenuated cercariae of Schistosoma mansoni, the immunity induced is highly dependent on CD4+ T cells and IFN-gamma. In contrast, mice vaccinated multiple times (3X) have decreased IFN-gamma expression, develop a more dominant Th2-type cytokine response as well as protective antibodies which can passively transfer immunity to naive recipients. Previously, we demonstrated the ability of IL-12, a potent IFN-gamma-inducing cytokine to enhance (1X) schistosome cell-mediated immunity when administered during the period of immunization. More recently, we asked what effects IL-12 would have on the development humoral-based immunity. While multiply-immunized/saline-treated mice demonstrated a 70-80% reduction in parasite burden, 3X/IL-12-vaccinated animals displayed an even more striking >90% reduction in challenge infection, with many mice in the later group demonstrating complete protection. Analysis of pulmonary cytokine mRNA responses demonstrated that control challenged mice elicited a dominant Th2-type response, 3X/saline-vaccinated produced a mixed Th1/Th2-type cytokine response, while 3X/IL-12-immunized animals displayed a dominant Th1-type response. The IL-12-treated group also showed a marked reduction in total serum IgE and tissue eosinophilia while SWAP-specific IgG2a and IgG2b Abs were elevated. Interestingly, animals vaccinated with IL-12 also showed a highly significant increase in total Ig titers specific for IrV-5, a known protective antigen. More importantly, 3X/IL-12 serum alone, when transferred to naive mice reduced worm burdens by over 60% while 3X/saline serum transferred significantly less protection. Nevertheless, animals vaccinated in the presence of IL-12 also develop macrophages with enhanced nitric oxide dependent killing activity against the parasites. Together, these observations suggest that IL-12, initially described as an adjuvant for cell-mediated immunity, may also be used as an adjuvant for promoting both humoral and cell-mediated protective responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autotransplantation of spleen tissue has been done, in the past ten years, in children with schistosomiasis mansoni with bleeding varices. The purposes of this investigation were: (1) to study the morphology and function of the remnant spleen tissue; (2) to quantify the production of tuftsin; and (3) to assess the immune response to pneomococcal vaccine of these patients. Twenty three children, who underwent splenectomy and autologous implantation of spleen tissue into the greater omentum were included in this investigation. The average postoperative follow-up is five years. Splenosis was proved by colloid liver-spleen scans. Search for Howell-Jolly bodies assessed the filtration function. Tuftsin and the titer of pneumococcal antibodies were quantified by ELISA. Splenosis was evident in all children; however, it was insufficient in two. Howell-Jolly bodies were found only in these two patients. The mean tuftsin serum concentration (335.0 ± 29.8 ng/ml) was inside the normal range. The immune response to pneumococcal vaccination was adequate in 15 patients; intermediate in four; and inadequate in four. From the results the following conclusions can be drawn: splenosis was efficient in maintaining the filtration splenic function in more than 90% and produced tuftsin inside the range of normality. It also provided the immunologic splenic response to pneumococcal vaccination in 65% of the patients of this series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although tumor-specific CD8 T-cell responses often develop in cancer patients, they rarely result in tumor eradication. We aimed at studying directly the functional efficacy of tumor-specific CD8 T cells at the site of immune attack. Tumor lesions in lymphoid and nonlymphoid tissues (metastatic lymph nodes and soft tissue/visceral metastases, respectively) were collected from stage III/IV melanoma patients and investigated for the presence and function of CD8 T cells specific for the tumor differentiation antigen Melan-A/MART-1. Comparative analysis was conducted with peripheral blood T cells. We provide evidence that in vivo-priming selects, within the available naive Melan-A/MART-1-specific CD8 T-cell repertoire, cells with high T-cell receptor avidity that can efficiently kill melanoma cells in vitro. In vivo, primed Melan-A/MART-1-specific CD8 T cells accumulate at high frequency in both lymphoid and nonlymphoid tumor lesions. Unexpectedly, however, whereas primed Melan-A/MART-1-specific CD8 T cells that circulate in the blood display robust inflammatory and cytotoxic functions, those that reside in tumor lesions (particularly in metastatic lymph nodes) are functionally tolerant. We show that both the lymph node and the tumor environments blunt T-cell effector functions and offer a rationale for the failure of tumor-specific responses to effectively counter tumor progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Recent advances in characterizing the immune recovery of HIV-1-infected people have highlighted the importance of the thymus for peripheral T-cell diversity and function. The aim of this study was to investigate differences in immune reconstitution profiles after highly active antiretroviral therapy (HAART) between HIV-children and adults. METHODS HIV patients were grouped according to their previous clinical and immunological status: 9 HIV-Reconstituting-adults (HIV-Rec-adults) and 10 HIV-Reconstituting-children (HIV-Rec-children) on HAART with viral load (VL) or=500 cells/microL at least during 6 months before the study and CD4+ function than HIV-Rec-adults and this fact affects the peripheral T-cell subsets. Thus, T-cell recovery after HAART in HIV-Rec-adults could be the consequence of antigen-independent peripheral T-cell expansion while in HIV-Rec-children thymic output could play a predominant role in immune reconstitution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of human immunodeficiency virus (HIV) on the immune response in patients with cutaneous leishmaniasis have not yet been fully delineated. This study quantified and evaluated the function of memory T-cell subsets in response to soluble Leishmania antigens (SLA) from patients coinfected with HIV and Leishmania with tegumentary leishmaniasis (TL). Eight TL/HIV coinfected subjects and 10 HIV seronegative subjects with TL were evaluated. The proliferative response of CD4+and CD8+T-cells and naïve, central memory (CM) and effector memory (EM) CD4+T-cells in response to SLA were quantified using flow cytometry. The median cell division indices for CD4+and CD8+T-cells of coinfected patients in response to SLA were significantly lower than those in patients with Leishmania monoinfection (p < 0.05). The proportions of CM and EM CD4+T-cells in response to SLA were similar between the coinfected patients and patients with Leishmania monoinfection. However, the median CM and EM CD4+T-cell counts from coinfected patients were significantly lower (p < 0.05). The reduction in the lymphoproliferative response to Leishmaniaantigens coincides with the decrease in the absolute numbers of both EM and CM CD4+T-cells in response to Leishmania antigens in patients coinfected with HIV/Leishmania.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-kappaB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-kappaB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type-specific function in TRIF-dependent TLR responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si les rôles fonctionnels de diverses cellules immunitaires infiltrant des tissus enflammés sont assez bien compris, par contre, étonnamment, on connaît bien moins la capacité des cellules non hématopoïétiques résidant dans des tissus, à moduler l'activité biologique des cellules immunitaires immigrantes, et donc le résultat de la réponse immunitaire. La présentation des antigènes, dans le contexte des molécules du CMH de classe II (CMHII) à la surface des cellules présentatrices d'antigènes (CPA) professionnelles à une sous- population de lymphocytes T, est cruciale pour le développement des réponses immunitaires protectives spécifiques de l'antigène. En général, l'expression de CMHII est réservée aux CPAs. Toutefois, au cours des pathologies inflammatoires spécifiques d'organe, telles que l'auto-immunité ou la maladie inflammatoire de l'intestin, l'expression de CMHII est également induite par la cytokine interféron (IFN)-y sur des cellules non hématopoïétiques qui résident dans des tissus enflammés. Les conséquences de ce phénomène sont encore peu comprises. Dans cette étude, nous avons utilisé une souche de souris génétiquement modifiées, qui n'a pas la capacité d'induire l'expression de CMHII sur les cellules non hématopoïétiques, mais a maintenu la régulation normale d'expression de CMHII sur les cellules hématopoïétiques. Nous avons appliqué ces souris à différents modèles d'inflammation intestinale et à un modèle de maladie qui imite la maladie auto-immune de l'inflammation du muscle cardiaque (myocardite) chez l'homme. Nous avons pu montrer que, au cours de l'inflammation intestinale, l'expression du CMHII nonhématopoïétique, ou encore l'expression du CMHII par les cellules épithéliales de l'intestin, confère une protection contre la maladie, en réduisant les cellules immunitaires inflammatoires et en augmentant les cellules Τ régulatrices anti-inflammatoires. Ces résultats pourraient expliquer l'échec des traitements d'anti-IFN-γ dans les maladies intestinales inflammatoires chez l'homme. En revanche, dans la myocardite auto-immune, nos résultats indiquent que la présentation d'antigènes par les cellules non hématopoïétiques du coeur est nécessaire pour l'apparition de la pathologie cardiaque, comme nos souris sont résistantes à la maladie. Toutefois, cela n'est pas dû à un défaut d'activation des lymphocytes T, car les lymphocytes Τ des souris mutantes sont parfaitement capables de promouvoir la maladie après le transfert adoptif dans des animaux de type naturel. Nos résultats suggèrent que, durant les maladies inflammatoires spécifiques d'organe, la présentation d'antigène par des cellules non hématopoïétiques module et contribue au résultat de la réponse immunitaire d'une manière opposée, conférant soit la protection contre la maladie ou sa promotion. Nos résultats pourraient ouvrir la voie à des thérapies qui prennent en compte la contribution de la présentation d'antigènes par les cellules non hématopoïétiques, au cours des maladies inflammatoires spécifiques d'organe. - Les molécules du CMH de classe II (CMHII) sont fondamentales pour la présentation des antigènes aux lymphocytes Τ CD4+, car elles permettent le développement des réponses immunitaires spécifiques de l'antigène. Il est largement admis que l'expression de CMHII est réservée aux cellules présentatrices d'antigènes (CPA). Cependant, dans des conditions inflammatoires, l'expression de CMHII est en principe également induite par l'interféron (IFN)-y sur les cellules non hématopoïétiques, telles que les cellules épithéliales et les cardiomyocytes. Une controverse existe jusqu'à présent au sujet de la fonction de cette présentation d'antigènes non professionnelle, pour savoir si elle favorise la tolérance ou l'immunité dépendante des lymphocytes Τ in vivo. Pour répondre à cette question, nous avons testé des souris qui ne sont pas capables d'induire l'expression du CMHII sur les cellules non hématopoïétiques (souris PIV-/- K14 CIITA Tg) parmi différents modèles murins de pathologies inflammatoires, à savoir les modèles de vaccination pour induire des réponses spécifiques d'antigènes des lymphocytes B, plusieurs modèles de colite et un modèle de myocardite auto-immune expérimental (EAM). Pour cela, nous avons administré à ces souris un modèle de colite atténuée, induite par une infection chronique à Helicobacter hepaticus et par l'administration d'anticorps monoclonaux bloquant le récepteur de l'interleukine (IL)-10 (anti-IL-10R). Dans ce système, nous avons pu observer que l'expression abrogée de CMHII a aggravé la colite bactérienne, soit par les cellules non hématopoïétiques, soit exclusivement par les cellules épithéliales intestinales (CEI) dans un autre modèle murin (souris plV_fl/fl vil-Cre Tg). Ce phénotype du côlon a été associé à une augmentation des fréquences de cellules immunitaires innées, de lymphocytes Th1 CD4+, et d'expression des cytokines et de chimiokines pro-inflammatoires, y compris l'IFN-γ. Notamment, l'expression défectueuse de CMHII non hématopoïétique a également réduit les cellules Τ régulatrices (Treg) Forkhead box P3 (FoxP3)+, sans influencer les fréquences des cellules innées lymphoïdes et des cellules Th17. Ces résultats suggèrent un rôle tolérogène de CEIs CMHII+ qui contribue à l'homéostasie immunitaire intestinale. En revanche, dans le modèle d'EAM, les souris ayant subi une ablation de CMHII non hématopoïétique étaient résistantes à l'induction de la maladie, alors que la progression de la pathologie cardiaque, dans les souris de type naturel ou hétérozygotes, a été accompagnée par une régulation positive de l'expression de CMHII du myocarde. Cependant, l'inflammation cardiaque pourrait être transférée de manière adoptive depuis des souris amorcées PIV-/- K14 CIITA Tg vers des souris de type naturel, indiquant l'absence de défaut intrinsèque d'amorçage des cellules T CD4+ dans notre modèle de souris. Ces observations impliquent un rôle à jouer pour des cellules CMHII+ non hématopoïétiques résidentes du coeur, dans la promotion active de ΙΈΑΜ. En conclusion, nos résultats, provenant de diverses pathologies inflammatoires spécifiques d'organes, suggèrent un rôle complexe et divergent, soit tolérogène, soit immunogène/ pathologique, pour l'expression de CMHII non hématopoïétique au cours des pathologies inflammatoires. L'expression non professionnelle de CMHII semble influencer le résultat des réponses immunitaires en fonction de différents facteurs, tels que le tissu cible, le(s) type(s) de cellule(s) non hématopoïétique(s) participante(s) et l'origine de l'inflammation. Nos résultats pourraient potentiellement ouvrir la voie à des applications thérapeutiques, qui tiennent compte de la contribution de la présentation d'antigènes par des CPAs non professionnelles, au cours de l'inflammation spécifique d'organe. - MHC class II (MHCII) molecules are fundamental for the presentation of antigens to CD4+ Τ cells, allowing the development of antigen-specific immune responses. It is widely accepted that MHCII expression is restricted to antigen-presenting cells (APC). However, under inflammatory conditions, MHCII expression is typically also induced by interferon (IFN)-y on nonhematopoietic cells such as epithelial cells and cardiomyocytes. So far, it remains controversial whether this nonprofessional antigen-presentation function promotes CD4+ Τ cell-dependent tolerance or immunity in vivo. To address this issue, we utilised mice which lack inducible MHCII expression on nonhematopoietic cells (pIV-/- K14 CIITA Tg mice) in different mouse models of inflammatory pathologies, namely immunisation models to induce antigen-specific Β cell responses, various colitis models and a model of experimental autoimmune myocarditis (EAM). In an attenuated model of colitis induced by chronic Helicobacter hepaticus infection and treatment with anti-interleukin (IL)-10 receptor (anti-IL-10R) monoclonal blocking antibody, we observed that abrogated MHCII expression by nonhematopoietic cells or, in an alternative tamoxifen-inducible mouse model (plV_fl/fl vil-Cre Tg mice), exclusively by intestinal epithelial cells (IEC), exacerbated bacterial-driven colitis, which was associated with increased colonic frequencies of innate immune cells, CD4+ Th1 cells and expression of proinflammatory cytokines and chemokines, including IFN-γ. Notably, defective nonhematopoietic MHCII expression also resulted in reduced Forkhead box P3 (FoxP3)+ regulatory Τ (Treg) cells without influencing innate lymphoid cell (ILC) and Th17 cell frequencies. These findings suggest a tolerogenic role of MHClT lECs to contribute to intestinal immune homeostasis. In contrast, in the EAM model, mice ablated of nonhematopoietic MHCII were resistant to disease induction, whereas progression of cardiac pathology in WT and heterozygous control mice was accompanied by upregulation of myocardial MHCII expression. However, cardiac inflammation could be adoptively transferred from primed pIV-/- K14 CIITA Tg mice into WT mice, indicating no intrinsic defect of CD4+ Τ activation in our mouse model. These observations imply a role for MHCIT heart-resident nonhematopoietic cells in actively promoting EAM. In conclusion, our findings from different organ-specific inflammatory pathologies suggest a complex and diverging role - either tolerogenic or immunogenic/ pathologic - for nonhematopoietic MHCII expression during inflammatory pathologies: Nonprofessional MHCII expression appears to influence the outcome of immune responses depending on 7 factors such as the target tissue, participating non hematopoietic cell type(s) and the origin of inflammation. Our findings may potentially open the way to therapeutic applications taking into account the contribution of antigen presentation by nonprofessional, tissue-resident APCs during organ-specific inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation is a protective attempt by the host to remove injurious stimuli and initiate the tissue healing process. The inflammatory response must be actively terminated, however, because failure to do so can result in 'bystander' damage to tissues and diseases such as arthritis or type-2 diabetes. Yet the mechanisms controlling excessive inflammatory responses are still poorly understood. Here we show that mouse effector and memory CD4(+) T cells abolish macrophage inflammasome-mediated caspase-1 activation and subsequent interleukin 1beta release in a cognate manner. Inflammasome inhibition is observed for all tested NLRP1 (commonly called NALP1) and NLRP3 (NALP3 or cryopyrin) activators, whereas NLRC4 (IPAF) inflammasome function and release of other inflammatory mediators such as CXCL2, interleukin 6 and tumour necrosis factor are not affected. Suppression of the NLRP3 inflammasome requires cell-to-cell contact and can be mimicked by macrophage stimulation with selected ligands of the tumour necrosis factor family, such as CD40L (also known as CD40LG). In a NLRP3-dependent peritonitis model, effector CD4(+) T cells are responsible for decreasing neutrophil recruitment in an antigen-dependent manner. Our findings reveal an unexpected mechanism of inflammasome inhibition, whereby effector and memory T cells suppress potentially damaging inflammation, yet leave the primary inflammatory response, crucial for the onset of immunity, intact.