941 resultados para ISOFORM NHE3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diarrhée congénitale de sodium est une maladie génétique très rare. Les enfants touchés par cette maladie présentent une diarrhée aqueuse sévère accompagnée d'une perte fécale de sodium et bicarbonates causant une déshydratation hyponatrémique et une acidose métabolique. Des analyses génétiques ont identifié des mutations du gène Spint2 comme cause de cette maladie. Le gène Spint2 code pour un inhibiteur de sérine protéase transmembranaire exprimé dans divers épithéliums tels que ceux du tube digestif ou des tubules rénaux. Le rôle physiologique de Spint2 n'est pas connu. De plus, aucun partenaire physiologique de Spint2 n'a été identifié et le mécanisme d'inhibition par Spint2 nous est peu connu. Le but de ce projet est donc d'obtenir de plus amples informations concernant la fonction et le rôle de Spint2 dans le contexte de la diarrhée congénitale de sodium, cela afin de mieux comprendre la physiopathologie des diarrhées et peut-être d'identifier de nouvelles cibles thérapeutiques. Un test fonctionnel dans les ovocytes de Xenopus a identifié les sérine protéases transmembranaires CAPI et Tmprssl3 comme potentielles cibles de Spint2 dans la mesure où ces deux protéases n'étaient plus bloquées par le mutant de Spint2 Y163C qui est associé avec la diarrhée congénitale de sodium. Des expériences fonctionnelles et biochimiques plus poussées suggèrent que l'inhibition de Tmprssl3 par Spint2 est le résultat d'une interaction complexe entre ces deux protéines. Les effets des sérine protéases transmembranaires sur l'échangeur Na+-H+ NHE3, qui pourrait être impliqué dans la pathogenèse de la diarrhée congénitale de sodium ont aussi été testés. Un clivage spécifique de NHE3 par la sérine protéase transmembranaire Tmprss3 a été observé lors d'expériences biochimiques. Malheureusement, la pertinence physiologique de ces résultats n'a pas pu être évaluée in vivo, étant donné que le modèle de souris knockout conditionnel de Spint2 que nous avons créé ne montrait une réduction de l'expression de Spint2 que de 50% et aucun phénotype. En résumé, ce travail met en évidence deux nouveaux partenaires possibles de Spint2, ainsi qu'une potentielle régulation de NHE3 par des sérine protéases transmembranaires. Des expériences supplémentaires faites dans des modèles animaux et lignées cellulaires sont requises pour évaluer la pertinence physiologique de ces données et pour obtenir de plus amples informations au sujet de Spint2 et de la diarrhée congénitale de sodium. - The congenital sodium diarrhea is a very rare genetic disease. Children affected by this condition suffer from a severe diarrhea characterized by watery stools with a high fecal loss of sodium and bicarbonates, resulting in hyponatremic dehydration and metabolic acidosis. Genetic analyses have identified mutations in the Spint2 gene as a cause of this disease. The spint2 gene encodes a transmembrane serine protease inhibitor expressed in various epithelial tissues including the gastro-intestinal tract and renal tubules. The physiological role of Spint2 is completely unknown. In addition, physiological partners of Spint2 are still to be identified and the mechanism of inhibition by Spint2 remains elusive. Therefore, the aim of this project was to get insights about the function and the role of Spint2 in the context of the congenital sodium diarrhea in order to better understand the pathophysiology of diarrheas and maybe identify new therapeutic targets. A functional assay in Xenopus oocytes identified the membrane-bound serine proteases CAPI and Tmprssl3 as potential targets of Spint2 because both proteases were no longer inhibited by the mutant Spint2 Y163C that has been associated with the congenital diarrhea. Further functional and biochemical experiments suggested that the inhibition of Tmprssl3 by Spint2 occurs though a complex interaction between both proteins. The effects of membrane-bound serine proteases on the Na+-H+ exchanger NHE3, which has been proposed to be involved in the pathogenesis of the congenital sodium diarrhea, were also tested. A specific cleavage of NHE3 by the membrane-bound serine protease Tmprss3 was observed in biochemical experiments. Unfortunately, the physiological relevance of these results could not be assessed in vivo since the conditional Spint2 knockout mouse model that we generated showed a reduction in Spint2 expression of only 50% and displayed no phenotype. Briefly, this work provides two new potential partners of Spint2 and emphasizes a putative regulation of NHE3 by membrane-bound serine proteases. Further work done in animal models and cell lines is required to assess the physiological relevance of these results and to obtain additional data about Spint2 and the congenital diarrhea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: High-dose chemotherapy (HDC) followed by autologous stem cell transplantation (ASCT) is used for the treatment of hemato-oncologic malignancies. In this study, we measured the effect of HDC/ASCT on plasma concentrations of antiangiogenic soluble vascular endothelial growth factor receptor 1 (sVEGFR1) and of leukapheresis products (LP) and patient serum on chick chorioallantoic (CAM) angiogenesis. MATERIALS AND METHODS: VEGFR1- and CD34-expressing cells of leukapheresis products were analyzed by flow cytometry. Alternatively spliced isoforms of VEGFR1 mRNA were quantified using reverse transcription PCR. RESULTS: Plasma concentrations of sVEGFR1 decreased after HDC, but significantly increased after ASCT. In the CAM assay, sera of patients elicited a proangiogenic effect before and after HDC, but a strong antiangiogenic response after ASCT, comparable to that of bevacizumab at therapeutic concentrations. LP contains high concentrations of sVEGFR1, and high density of VEGFR1(+) neutrophilic granulocytes, in which mRNA expression is shifted toward the soluble VEGFR1 isoform. CONCLUSION: Neutrophil-derived antiangiogenic sVEGFR1 within the LP may contribute to the therapeutic efficacy of ASCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: The insulin sensitizer rosiglitazone (RTZ) acts by activating peroxisome proliferator and activated receptor gamma (PPAR gamma), an effect accompanied in vivo in humans by an increase in fat storage. We hypothesized that this effect concerns PPARgamma(1) and PPARgamma(2) differently and is dependant on the origin of the adipose cells (subcutaneous or visceral). To this aim, the effect of RTZ, the PPARgamma antagonist GW9662 and lentiviral vectors expressing interfering RNA were evaluated on human pre-adipocyte models. Methods: Two models were investigated: the human pre-adipose cell line Chub-S7 and primary pre-adipocytes derived from subcutaneous and visceral biopsies of adipose tissue (AT) obtained from obese patients. Cells were used to perform oil-red O staining, gene expression measurements and lentiviral infections. Results: In both models, RTZ was found to stimulate the differentiation of pre-adipocytes into mature cells. This was accompanied by significant increases in both the PPARgamma(1) and PPARgamma(2) gene expression, with a relatively stronger stimulation of PPARgamma(2). In contrast, RTZ failed to stimulate differentiation processes when cells were incubated in the presence of GW9662. This effect was similar to the effect observed using interfering RNA against PPARgamma(2). It was accompanied by an abrogation of the RTZ-induced PPARgamma(2) gene expression, whereas the level of PPARgamma(1) was not affected. Conclusions: Both the GW9662 treatment and interfering RNA against PPARgamma(2) are able to abrogate RTZ-induced differentiation without a significant change of PPARgamma(1) gene expression. These results are consistent with previous results obtained in animal models and suggest that in humans PPARgamma(2) may also be the key isoform involved in fat storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O(2)), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle. Immunohistochemistry showed the labeling for Hsp70 in subsets of both slow/type 1 and fast/type 2A myofibers of control, sedentary, and normoxic rats. Endurance training increased about threefold the percentage of Hsp70-positive myofibers (P < 0.001), and changed the distribution of Hsp70 immunoreactivity, which involved a larger subset of both type 2A and intermediate type 2A/2X myofibers (P < 0.001) and vascular smooth muscle cells. Hypoxia induced Hsp70 immunoreactivity in smooth muscle cells of veins and did not increase the percentage of Hsp70-positive myofibers; however, sustained exposure to hypoxia affected the distribution of Hsp70 immunoreactivity, which appeared detectable in a very small subset of type 2A fibers, whereas it concentrated in type 1 myofibers (P < 0.05) together with the labeling for heme-oxygenase isoform 1, a marker of oxidative stress. Therefore, the chronic induction of Hsp70 expression in rat skeletal muscles is not obligatory related to the slow fiber phenotype but reveals the occurrence of a stress response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARβ/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARβ/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARβ/δ activation by GW501516 enhanced the physical interaction between PPARβ/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARβ/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARβ/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. MATERIALS AND METHODS: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines. RESULTS: Overexpression of PI3KC2β was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2β or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2β also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. CONCLUSION: Together, these data show that PI3KC2β contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaporin 4 (AQP4) is a water channel involved in water movements across the cell membrane and is spatially organized on the cell surface in orthogonal array particles (OAPs). Its role in edema formation or resolution after stroke onset has been studied mainly at late time points. We have shown recently that its expression is rapidly induced after ischemia coinciding in time with an early swelling of the ischemic hemisphere. There are two isoforms of AQP4: AQP4-M1 and AQP4-M23. The ratio of these isoforms influences the size of the OAPs but the functional impact is not known. The role of the early induction of AQP4 is not yet known. Thrombin preconditioning in mice provides a useful model to study endogenous protective mechanisms. Using this model, we provide evidence for the first time that the early induction of AQP4 may contribute to limit the formation of edema and that the AQP4-M1 isoform is predominantly induced in the ischemic tissue at this time point. Although it prevents edema formation, the early induction of the AQP4 expression does not prevent the blood-brain barrier disruption, suggesting an effect limited to the prevention of edema formation possibly by removing of water from the tissue.