951 resultados para INJECTION LOCKING
Resumo:
Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The variations with the seasonal cycle of the atmospheric response to constant SST anomalies in the eastern tropical Pacific are investigated with the atmospheric GCM, HadAM3. The equatorial wind response is weakest in January and February when the warmest SSTs are south of the Equator and strongest in April when the warmest SSTs are on the Equator. This may have consequences for the seasonality of the onset and termination of El Niño. Westerly wind anomalies in the tropical Pacific associated with El Niño have previously been observed to shift south of the Equator, weakening on the Equator, during the northern winter. It has been suggested that this may contribute to the termination of El Niño in spring. These experiments demonstrate that such a shift can arise solely in response to the mean seasonal cycle during El Niño and does not require changes in SST anomalies.
Resumo:
Rheology of milk foams generated by steam injection was studied during the transient destabilization process using steady flow and dynamic oscillatory techniques: yield stress (τ_y) values were obtained from a stress ramp (0.2 to 25 Pa) and from strain amplitude sweep (0.001 to 3 at 1 Hz of frequency); elastic (G') and viscous (G") moduli were measured by frequency sweep (0.1 to 150 Hz at 0.05 of strain); and the apparent viscosity (η_a) was obtained from the flow curves generated from the stress ramp. The effect of plate roughness and the sweep time on τ_y was also assessed. Yield stress was found to increase with plate roughness whereas it decreased with the sweep time. The values of yield stress and moduli—G' and G"—increased during foam destabilization as a consequence of the changes in foam properties, especially the gas volume fraction, φ, and bubble size, R_32 (Sauter mean bubble radius). Thus, a relationship between τ_y, φ, R_32, and σ (surface tension) was established. The changes in the apparent viscosity, η, showed that the foams behaved like a shear thinning fluid beyond the yield point, fitting the modified Cross model with the relaxation time parameter (λ) also depending on the gas volume fraction. Overall, it was concluded that the viscoelastic behavior of the foam below the yield point and liquid-like behavior thereafter both vary during destabilization due to changes in the foam characteristics.
Resumo:
Reaction Injection Moulding is a technology that enables the rapid production of complex plastic parts directly from a mixture of two reactive materials of low viscosity. The reactants are mixed in specific quantities and injected into a mould. This process allows large complex parts to be produced without the need for high clamping pressures. This chapter explores the simulation of the complex processes involved in reaction injection moulding. The reaction processes mean that the dynamics of the material in the mould are in constant evolution and an effective model which takes full account of these changing dynamics is introduced and incorporated in to finite element procedures, which are able to provide a complete simulation of the cycle of mould filling and subsequent curing.
Resumo:
This paper examines the potential mutual conflict between interventions aimed at formalising artisanal and small-scale mining (ASM) on the one hand, and policies implemented in response to the Reducing Emissions from Deforestation and Forest Degradation (REDD) initiative on the other. Deforestation caused by ASM undermines sound forest management, and potentially threatens the implementation of REDD. Conversely, the adoption of REDD could further marginalise and criminalise the ASM sector, reducing its contribution to poverty alleviation. Reviewing a series of commonalities between ASM and forest management highlights many difficulties facing policy-makers. Potentially, contradictory outcomes of evolving governance arrangements means novel cross-sectoral institutions will be required in order to realise the full potential of REDD and ASM to address poverty reduction in a complementary fashion. The analysis reiterates the centrality of livelihoods to REDD and the need for policies to take into account local contexts.
Resumo:
Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.
Resumo:
Behavioral consequences of convulsive episodes are well documented, but less attention was paid to changes that occur in response to subconvulsant doses of drugs. We investigated short- and long-term effects of a single systemic injection of a subconvulsant dose of pilocarpine on the behavior of rats as evaluated in the elevated plus maze. Pilocarpine induced an anxiogenic-like profile 24 h later, and this effect persisted for up to 3 months (% of time spent on open arms at 24 h, control = 35.47 +/- 3.23; pilocarpine 150 = 8.2 +/- 2.6; 3 months, control = 31.9 +/- 5.5; pilocarpine 150 = 9.3 +/- 4.9). Temporary inactivation of fimbria-fornix with lidocaine 4% promoted an anxiolytic-like effect per se, suggesting a tonic control of this pathway on the modulation of anxiety-related behaviors. Lidocaine also reduced the anxiogenic-like profile of animals tested 1 month after pilocarpine treatment (% of time spent on open arms, saline + phosphate-buffered saline (PBS) = 31.7 + 3.7; saline + lidocaine = 54.4 + 4.7; pilocarpine + PBS = 10.3 + 4.1; pilocarpine + lidocaine = 40.1 + 9.1). To determine whether the anxiogenic-like effect was mediated by septal region or by direct hippocampal projections to the diencephalon, the neural transmission of post-commissural fornix was blocked, and a similar reduction in the anxiogenic-like effect of pilocarpine was observed. Our findings suggest that a single systemic injection of pilocarpine may induce long-lasting anxiogenic-like behavior in rats, an effect that appears to be mediated, in part, through a direct path from hippocampus to medial hypothalamic sites involved in fear responses.
Resumo:
Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Optimization of photo-Fenton degradation of copper phthalocyanine blue was achieved by response surface methodology (RSM) constructed with the aid of a sequential injection analysis (SIA) system coupled to a homemade photo-reactor. Highest degradation percentage was obtained at the following conditions [H(2)O(2)]/[phthalocyanine] = 7, [H(2)O(2)]/[FeSO(4)] = 10, pH = 2.5, and stopped flow time in the photo reactor = 30 s. The SIA system was designed to prepare a monosegment containing the reagents and sample, to pump it toward the photo-reactor for the specified time and send the products to a flow-through spectrophotometer for monitoring the color reduction of the dye. Changes in parameters such as reagent molar ratios. residence time and pH were made by modifications in the software commanding the SI system, without the need for physical reconfiguration of reagents around the selection valve. The proposed procedure and system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 97% of the dye was degraded. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10-5000 mu mol L(-1) with detection and quantification limits of 1.7 (S/N = 3) and 5.9 (S/N = 10) mu mol L(-1), respectively. The repeatability of the method was evaluated using a 500 mu mol L(-1) hydrogen peroxide solution, the value obtained being 1.6% (n = 14). A sampling rate of 112 samples h(-1) was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.
Resumo:
This paper describes the development of a sequential injection method to automate the fluorimetric determination of glyphosate based on a first step of oxidation to glycine by hypochlorite at 48 degrees C, followed by reaction with the fluorogenic reagent o-phthaldialdehyde in presence of 2-mercaptoethanol in borate buffer (pH > 9) to produce a fluorescent 1-(2`-hydroxyethylthio)-2-N-alkylisoindole. The proposed method has a linear response for glyphosate concentrations between 0.25 and 25.0 mu mol L(-1), with limits of detection and quantification of 0.08 and 0.25 mu mol L(-1), respectively. The sampling rate of the method is 18 samples per hour, consuming only a fraction of reagents consumed by the chromatographic method based on the same chemistry. The method was applied to study adsorption/desorption properties in a soil and in a sediment sample. Adsorption and desorption isotherms were properly fitted by Freundlich and Langmuir equations, leading to adsorption capacities of 1384 +/- 26 and 295 +/- 30 mg kg(-1) for the soil and sediment samples, respectively. These values are consistent with the literature, with the larger adsorption capacity of the soil being explained by its larger content of clay minerals, while the sediment was predominantly sandy. (C) 2011 Elsevier B.V. All rights reserved.