969 resultados para INCLUDING PROTEASE INHIBITORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified fourteen dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2mutant endometrial cancers (EC). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors. Whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2mutant cell lines, 3/7 showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2N550K in JHUEM-2 cells (FGFR2C383R) conferred resistance (~5 fold) to PD173074, providing independent data that FGFR2N550K can be associated with drug resistance. Biochemical in vitro kinase analyses also shows ponatinib is more effective than dovitinib at inhibiting FGFR2N550K. We propose tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a rapidly growing appreciation of the important physiological roles played by kallikreins and kallikrein-related peptidases (KLKs). Recent studies have revealed that these enzymes control key events in processes as diverse as inflammation and skin desquamation. Accordingly, there is considerable interest in developing tools to further dissect kallikrein activity, and a burgeoning effort aimed at producing lead inhibitors for therapeutic development. Indeed, several candidate inhibitors are already in clinical trials. This chapter surveys the naturally occurring kallikrein inhibitors, together with strategies for employing these molecules as bioscaffolds, as well as current progress in the development of small-molecule kallikrein inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmin is the primary enzyme responsible for dissolution of fibrin in the circulatory system. Plasminogen, the zymogen of plasmin is expressed ubiquitously in the human body [1], with the predominant source being the liver [2, 3]. Plasminogen is produced as an 810 amino acid protein with a 19 amino acid leader peptide, which is cleaved during secretion to produce the mature 791 amino acid one-chain zymogen. This is converted to plasmin by cleavage of the Arg561 - Val562 scissile bond [4], resulting in an active protease consisting of two disulfide linked chains. The amino-terminal heavy chain (residues Glu1-Arg561) is comprised of a plasminogen/apple/nematode (PAN) domain [5] and five kringle domains of approximately equal size [6] while the light chain (residues Val562-Asn791) contains a serine protease domain homologous to trypsin with a catalytic triad comprising His603, Asp646 and Ser741 [7]. Both plasmin and plasminogen occur in two forms, full length and a Lys77-Lys78 activated variant produced through self catalysis (Figure 1). The former exists in a tight conformation through binding of Lys50 and/or Lys62 to kringle domain 5 [8, 9] while Lys78-plasminogen assumes a more relaxed conformation rendering it more susceptible to plasmin conversion [10, 11].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endometrial cancer is one of the most common female diseases in developed nations and is the most commonly diagnosed gynaecological cancer in Australia. The disease is commonly classified by histology: endometrioid or non-endometrioid endometrial cancer. While non-endometrioid endometrial cancers are accepted to be high-grade, aggressive cancers, endometrioid cancers (comprising 80% of all endometrial cancers diagnosed) generally carry a favourable patient prognosis. However, endometrioid endometrial cancer patients endure significant morbidity due to surgery and radiotherapy used for disease treatment, and patients with recurrent disease have a 5-year survival rate of less than 50%. Genetic analysis of women with endometrial cancer could uncover novel markers associated with disease risk and/or prognosis, which could then be used to identify women at high risk and for the use of specialised treatments. Proteases are widely accepted to play an important role in the development and progression of cancer. This PhD project hypothesised that SNPs from two protease gene families, the matrix metalloproteases (MMPs, including their tissue inhibitors, TIMPs) and the tissue kallikrein-related peptidases (KLKs) would be associated with endometrial cancer susceptibility and/or prognosis. In the first part of this study, optimisation of the genotyping techniques was performed. Results from previously published endometrial cancer genetic association studies were attempted to be validated in a large, multicentre replication set (maximum cases n = 2,888, controls n = 4,483, 3 studies). The rs11224561 progesterone receptor SNP (PGR, A/G) was observed to be associated with increased endometrial cancer risk (per A allele OR 1.31, 95% CI 1.12-1.53; p-trend = 0.001), a result which was initially reported among a Chinese sample set. Previously reported associations for the remaining 8 SNPs investigated for this section of the PhD study were not confirmed, thereby reinforcing the importance of validation of genetic association studies. To examine the effect of SNPs from the MMP and KLK families on endometrial cancer risk, we selected the most significantly associated MMP and KLK SNPs from genome-wide association study analysis (GWAS) to be genotyped in the GWAS replication set (cases n = 4,725, controls n = 9,803, 13 studies). The significance of the MMP24 rs932562 SNP was unchanged after incorporation of the stage 2 samples (Stage 1 per allele OR 1.18, p = 0.002; Combined Stage 1 and 2 OR 1.09, p = 0.002). The rs10426 SNP, located 3' to KLK10 was predicted by bioinformatic analysis to effect miRNA binding. This SNP was observed in the GWAS stage 1 result to exhibit a recessive effect on endometrial cancer risk, a result which was not validated in the stage 2 sample set (Stage 1 OR 1.44, p = 0.007; Combined Stage 1 and 2 OR 1.14, p = 0.08). Investigation of the regions imputed surrounding the MMP, TIMP and KLK genes did not reveal any significant targets for further analysis. Analysis of the case data from the endometrial cancer GWAS to identify genetic variation associated with cancer grade did not reveal SNPs from the MMP, TIMP or KLK genes to be statistically significant. However, the representation of SNPs from the MMP, TIMP and KLK families by the GWAS genotyping platform used in this PhD project was examined and observed to be very low, with the genetic variation of four genes (MMP23A, MMP23B, MMP28 and TIMP1) not captured at all by this technique. This suggests that comprehensive candidate gene association studies will be required to assess the role of SNPs from these genes with endometrial cancer risk and prognosis. Meta-analysis of gene expression microarray datasets curated as part of this PhD study identified a number of MMP, TIMP and KLK genes to display differential expression by endometrial cancer status (MMP2, MMP10, MMP11, MMP13, MMP19, MMP25 and KLK1) and histology (MMP2, MMP11, MMP12, MMP26, MMP28, TIMP2, TIMP3, KLK6, KLK7, KLK11 and KLK12). In light of these findings these genes should be prioritised for future targeted genetic association studies. Two SNPs located 43.5 Mb apart on chromosome 15 were observed from the GWAS analysis to be associated with increased endometrial cancer grade, results that were validated in silico in two independent datasets. One of these SNPs, rs8035725 is located in the 5' untranslated region of a MYC promoter binding protein DENND4A (Stage 1 OR 1.15, p = 9.85 x 10P -5 P, combined Stage 1 and in silico validation OR 1.13, p = 5.24 x 10P -6 P). This SNP has previously been reported to alter the expression of PTPLAD1, a gene involved in the synthesis of very long fatty acid chains and in the Rac1 signaling pathway. Meta-analysis of gene expression microarray data found PTPLAD1 to display increased expression in the aggressive non-endometrioid histology compared with endometrioid endometrial cancer, suggesting that the causal SNP underlying the observed genetic association may influence expression of this gene. Neither rs8035725 nor significant SNPs identified by imputation were predicted bioinformatically to affect transcription factor binding sites, indicating that further studies are required to assess their potential effect on other regulatory elements. The other grade- associated SNP, rs6606792, is located upstream of an inferred pseudogene, ELMO2P1 (Stage 1 OR 1.12, p = 5 x 10P -5 P; combined Stage 1 and in silico validation OR 1.09, p = 3.56 x 10P -5 P). Imputation of the ±1 Mb region surrounding this SNP revealed a cluster of significantly associated variants which are predicted to abolish various transcription factor binding sites, and would be expected to decrease gene expression. ELMO2P1 was not included on the microarray platforms collected for this PhD, and so its expression could not be investigated. However, the high sequence homology of ELMO2P1 with ELMO2, a gene important to cell motility, indicates that ELMO2 could be the parent gene for ELMO2P1 and as such, ELMO2P1 could function to regulate the expression of ELMO2. Increased expression of ELMO2 was seen to be associated with increasing endometrial cancer grade, as well as with aggressive endometrial cancer histological subtypes by microarray meta-analysis. Thus, it is hypothesised that SNPs in linkage disequilibrium with rs6606792 decrease the transcription of ELMO2P1, reducing the regulatory effect of ELMO2P1 on ELMO2 expression. Consequently, ELMO2 expression is increased, cell motility is enhanced leading to an aggressive endometrial cancer phenotype. In summary, these findings have identified several areas of research for further study. The results presented in this thesis provide evidence that a SNP in PGR is associated with risk of developing endometrial cancer. This PhD study also reports two independent loci on chromosome 15 to be associated with increased endometrial cancer grade, and furthermore, genes associated with these SNPs to be differentially expressed according in aggressive subtypes and/or by grade. The studies reported in this thesis support the need for comprehensive SNP association studies on prioritised MMP, TIMP and KLK genes in large sample sets. Until these studies are performed, the role of MMP, TIMP and KLK genetic variation remains unclear. Overall, this PhD study has contributed to the understanding of genetic variation involvement in endometrial cancer susceptibility and prognosis. Importantly, the genetic regions highlighted in this study could lead to the identification of novel gene targets to better understand the biology of endometrial cancer and also aid in the development of therapeutics directed at treating this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using both human and murine cell lines, we show that malignant cells are able to invade through basement membrane and also secrete elevated amounts of collagenase IV, an enzyme implicated in the degradation of basement membranes. Using serine proteinase inhibitors and antibodies to plasminogen activators as well as a newly described collagenase inhibitor we demonstrate that a protease cascade leads to the activation of an enzyme(s) that cleaves collagen IV. Inhibition at each step reduces the invasion of the tumor cells through reconstituted basement membrane in vitro. Treatment with a collagenase inhibitor reduced the incidence of lung lesions in mice given i.v. injections of malignant melanoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial tail-specific proteases (Tsps) have been attributed a wide variety of functions including intracellular virulence, cell wall morphology, proteolytic signal cascades and stress response. This study tested the hypothesis that Tsp has a key function for the transmissive form of Legionella pneumophila. A tsp mutant was generated in Legionella pneumophila 130b and the characteristics of this strain and the isogenic wild-type were examined using a range of growth and proteomic analyses. Recombinant Tsp protein was also produced and analyzed. The L. pneumophila tsp mutant showed no defect in growth on rich media or during thermo-osmotic stress conditions. In addition, no defects in cellular morphology were observed when the cells were examined using transmission electron microscopy. Purified recombinant Tsp was found to be an active protease with a narrow substrate range. Proteome analysis using iTRAQ (5% coverage of the proteome) found that, of those proteins detected, only 5 had different levels in the tsp mutant compared to the wild type. ACP (Acyl Carrier Protein), which has a key role for Legionella differentiation to the infectious form, was reduced in the tsp mutant; however, tsp(-) was able to infect and replicate inside macrophages to the same extent as the wild type. Combined, these data demonstrate that Tsp is a protease but is not essential for Legionella growth or cell infection. Thus, Tsp may have functional redundancy in Legionella.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis. Methods An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing. Results At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site. Conclusion These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine proteinase inhibitors play important and diverse roles in biological processes such as coagulation, defense mechanisms, and immune responses. Here, we identified and characterized a Kunitz-type proteinase inhibitor, designated FcKuSPI, of the BPTI/Kunitz family of serine proteinase inhibitors from the hemocyte cDNA library of the shrimp Fenneropenaeus chinensis. The deduced amino acid sequence of FcKuSPI comprises 80 residues with a putative signal peptide of 15 amino acids. The predicted molecular weight of the mature peptide is 7.66 kDa and its predicted isoelectric point is 8.84. FcKuSPI includes a Kunitz domain containing six conserved cysteine residues that are predicted to form three disulfide bonds. FcKuSPI shares 44e53% homology with BPTI/Kunitz family members from other species. FcKuSPI mRNAwas expressed highly in the hemocytes and moderately in muscle in healthy shrimp. Recombinant FcKuSPI protein demonstrated anti-protease activity against trypsin and anticoagulant activity against citrated human plasma in a dose-dependent manner in in vitro assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Ankylosing spondylitis (AS) is unique in its pathology where inflammation commences at the entheses before progressing to an osteoproliferative phenotype generating excessive bone formation that can result in joint fusion. The underlying mechanisms of this progression are poorly understood. Recent work has suggested that changes in Wnt signalling, a key bone regulatory pathway, may contribute to joint ankylosis in AS. Using the proteoglycan-induced spondylitis (PGISp) mouse model which displays spondylitis and eventual joint fusion following an initial inflammatory stimulus, we have characterised the structural and molecular changes that underlie disease progression. Methods: PGISp mice were characterised 12 weeks after initiation of inflammation using histology, immunohistochemistry (IHC) and expression profiling. Results: Inflammation initiated at the periphery of the intervertebral discs progressing to disc destruction followed by massively excessive cartilage and bone matrix formation, as demonstrated by toluidine blue staining and IHC for collagen type I and osteocalcin, leading to syndesmophyte formation. Expression levels of DKK1 and SOST, Wnt signalling inhibitors highly expressed in joints, were reduced by 49% and 63% respectively in the spine PGISp compared with control mice (P < 0.05) with SOST inhibition confirmed by IHC. Microarray profiling showed genes involved in inflammation and immune-regulation were altered. Further, a number of genes specifically involved in bone regulation including other members of the Wnt pathway were also dysregulated. Conclusions: This study implicates the Wnt pathway as a likely mediator of the mechanism by which inflammation induces bony ankylosis in spondyloarthritis, raising the potential that therapies targeting this pathway may be effective in preventing this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amino acid sequences of proteinaceous proteinase inhibitors have been extensively analysed for deriving information regarding the molecular evolution and functional relationship of these proteins. These sequences have been grouped into several well defined families. It was found that the phylogeny constructed with the sequences corresponding to the exposed loop responsible for inhibition has several branches that resemble those obtained from comparisons using the entire sequence. The major branches of the unrooted tree corresponded to the families to which the inhibitors belonged. Further branching is related to the enzyme specificity of the inhibitor. Examination of the active site loop sequences of trypsin inhibitors revealed that there are strong preferences for specific amino acids at different positions of the loop. These preferences are inhibitor class specific. Inhibitors active against more than one enzyme occur within a class and confirm to class specific sequence in their loops. Hence, only a few positions in the loop seem to determine the specificity. The ability to inhibit the same enzyme by inhibitors that belong to different classes appears to be a result of convergent evolution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.