971 resultados para II RECEPTOR ANTAGONIST


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To screen for mutations in AMH and AMHR2 genes in patients with persistent Mullerian duct syndrome (PMDS). Patients and method: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. Results: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p. Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. Conclusion: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p. Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The present study provides the first in vivo evidence that the cannabinoid CB1 receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB1 receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. 2. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB1 receptor. 3. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB1 receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. 4. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB1 receptor in the control of peripheral factors that modulate cardiovascular function. 5. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB1 receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamicpituitaryadrenal axis. 6. Collectively, the results of the present study indicate that the CB1 receptor modulates neurohypophyseal hormone secretion and systemic factors, such as corticosterone and ANP, thus participating in homeostatic responses to altered extracellular volume and plasma tonicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The aim of the present work was to investigate the involvement of the mu(1)-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Methods: Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective mu(1)-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Results: Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of mu(1)-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of mu(1)-opioid receptor decreased the duration of seizures. Conclusion: mu(1)-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of mu(1)-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: This study aimed to evaluate a panel of proinflammatory and antiinflammatory cytokines in noncomplicated and complicated parapneumonic pleural effusions and to correlate their levels with pleural fluid biochemical parameters. Methods: Serum and pleural effusion were collected from 60 patients with noncomplicated (n = 26) or complicated (n = 34) parapneumonic effusions and assayed for cytologic, biochemical, and proinflammatory and antiinflammatory cytokines. Student t test was used to compare serum and pleural fluid values, Spearman correlation to analyze the relationship between pleural fluid cytokines and biochemical parameters, and accuracy of pleural fluid cytokine levels to determine the optimal cutoff value for identification of complicated effusions. Corrections for multiple comparisons were applied and a P value < .05 was accepted as significant. Results: Serum and pleural fluid cytokine levels of IL-8, vascular endothelial growth factor (VEGF), IL-10, and tumor necrosis factor (TNF) soluble receptor (sR) II were similar between groups. In contrast, complicated effusions had higher levels of pleural fluid IL-1 beta, IL-1 receptor antagonist (ra), and TNF sRI. Negative correlations were found between pleural fluid glucose with IL-1 beta and TNF sRI and positive correlations between lactic dehydrogenate (LDH) with IL-1 beta, IL-8, and VEGF. Pleural fluid levels of IL-1 beta, IL-1ra, and TNF sRI were more accurate than IL-8, VEGF, IL-10, and TNF sRII in discriminating complicated effusions. Conclusions: Both proinflammatory and antiinflammatory cytokine levels in pleural fluid are elevated in complicated in comparison with noncomplicated parapneumonic pleural effusions, and they correlate with both pleural fluid glucose and LDH levels. IL-1 beta, IL-1ra, and TNF sRI had higher sensitivity and specificity than IL-8, VEGF, IL-10, and TNF sRII in discriminating complicated effusions. CHEST 2012; 141( 1):183-189

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously reported that melatonin modulates the Plasmodium falciparum erythrocytic cycle by increasing schizont stage population as well as diminishing ring stage population. In addition, the importance of calcium and cAMP in melatonin signaling pathway in P. falciparum was also demonstrated. Nevertheless, the molecular effectors of the indoleamine signaling pathway remain elusive. We now demonstrate by real-time PCR that melatonin treatment up-regulates genes related to ubiquitin/proteasome system (UPS) components and that luzindole, a melatonin receptor antagonist, inhibits UPS transcription modulation. We also show that protein kinase PfPK7, a P. falciparum orphan kinase, plays a crucial role in the melatonin transduction pathway, since following melatonin treatment of P. falciparum parasites where pfpk7 gene is disrupted (pfpk7- parasites) (i) the ratio of asexual stages remain unchanged, (ii) the increase in cytoplasmatic calcium in response to melatonin was strongly diminished and (iii) up-regulation of UPS genes did not occur. The wild-type melatonin-induced alterations in cell cycle features, calcium rise and UPS gene transcription were restored by re-introduction of a functional copy of the pfpk7 gene in the pfpk7- parasites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To assess safety and efficacy of sitaxsentan 50 and 100 mg in patients with pulmonary arterial hypertension (PAH). Background: Sitaxsentan is a highly selective endothelin-A receptor antagonist that was recently withdrawn by the manufacturer because of a pattern of idiosyncratic liver injury. Methods: Before sitaxsentan withdrawal, this 18-week double-blind, placebo-controlled study randomized patients with PAH to receive placebo or sitaxsentan 50 or 100 mg once daily. The primary efficacy endpoint was change from baseline in 6-min walk distance (6MWD) at week 18. Changes in World Health Organization (WHO) functional class and time to clinical worsening (TTCW) were secondary endpoints. The primary efficacy analysis was powered for sitaxsentan 100 mg versus placebo. Results: Of 98 randomized patients, 61% were WHO functional class II at baseline. Improvement from baseline to week 18 in 6MWD occurred with sitaxsentan 100 but not 50 mg; a strong placebo effect was observed. At week 18, WHO functional class was improved or maintained in more patients receiving sitaxsentan 100 mg than placebo (P = 0.038); 0% versus 12% of patients deteriorated, respectively. TTCW was not significantly different for 100-mg sitaxsentan patients than placebo (P = 0.090). Adverse events (AEs) occurring more frequently with sitaxsentan (50 or 100 mg) included headache, peripheral edema, dizziness, nausea, extremity pain, and fatigue; most AEs were of mild or moderate severity. Conclusion: Sitaxsentan 100 mg improved functional class but not 6MWD in PAH patients who were mostly WHO functional class II at baseline. No patient receiving sitaxsentan 100 mg experienced clinical worsening; sitaxsentan was well tolerated. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Kinins, with bradykinin and des-Arg(9)-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg(9)-bradykinin as well as Lys-des-Arg(9)-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-Daspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Principal Findings: Bradykinin at 10 nM and 1 mu M concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg(9)-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059,showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. Conclusions: Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg(9)-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arthritic pain is a serious health problem that affects a large number of patients. Toll-like receptors (TLRs) activation within the joints has been implicated in pathophysiology of arthritis. However, their role in the genesis of arthritic pain needs to be demonstrated. In the present study, it was addressed the participation of TLR2 and TLR4 and their adaptor molecule MyD88 in the genesis of joint hypernociception (a decrease in the nociceptive threshold) during zymosan-induced arthritis. Zymosan injected in the tibio-tarsal joint induced mechanical hypernociception in C57BL/6 wild type mice that was reduced in TLR2 and MyD88 null mice. On the other hand, zymosan-induced hypernociception was similar in C3H/HePas and C3H/Hej mice (TLR4 mutant mice). Zymosan-induced joint hypernociception was also reduced in TNFR1 null mice and in mice treated with IL-1 receptor antagonist or with an antagonist of CXCR1/2. Moreover, the joint production of TNF-alpha, IL-1 beta and CXCL1/KC by zymosan was dependent on TLR2/MyD88 signaling. Investigating the mechanisms by which TNF-alpha, IL-1 beta and CXCL1/KC mediate joint hypernociception, joint administration of these cytokines produced mechanical hypernociception, and they act in an interdependent manner. In last instance, their hypernociceptive effects were dependent on the production of hypernociceptive mediators, prostaglandins and sympathetic amines. These results indicate that in zymosan-induced experimental arthritis, TLR2/MyD88 is involved in the cascade of events of joint hypernociception through a mechanism dependent on cytokines and chemokines production. Thus, TLR2/MyD88 signaling might be a target for the development of novel drugs to control pain in arthritis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Persistent beta-adrenergic receptor stimulation with isoproterenol is associated with cardiac hypertrophy as well as cardiac synthesis of angiotensin II. Serum- and glucocorticoid-regulated kinase type 1 (SGK-1) is a key mediator in structural, functional and molecular cardiac effects of aldosterone in rats. This study was designed to investigate the cardiac effects of the mineralocorticoid receptor antagonist spironolactone on the response to isoproterenol treatment in rats, as well as the involvement of the main mediator of cellular aldosterone action, SGK-1, in the heart. Male Wistar rats received isoproterenol (3 mg kg-1 day-1) or vehicle for 15 days. Half of the animals in each group were simultaneously treated with spironolactone (200 mg kg-1 day-1). Systolic and diastolic blood pressures were not significantly different among groups. Treatment with spironolactone normalized the increased left ventricular end-diastolic pressure observed in isoproterenol-treated rats. Isoproterenol treatment induced cardiac hypertrophy and increased collagen content, both of which were normalized by spironolactone treatment. The mRNA levels of transforming growth factor beta, connective tissue growth factor, matrix metalloprotease 2, matrix metalloprotease inhibitor 2, tumour necrosis factor a, interleukin 1 beta, p22phox and xanthine dehydrogenase were increased (P < 0.05) in isoproterenol-treated rats, and this effect was prevented by spironolactone (P < 0.05). Spironolactone also reduced the elevated SGK-1 expression in isoproterenol-treated rats. The observed reduction of the principal mediator of aldosterone cellular actions, SGK-1, by spironolactone in hearts from isoproterenol-treated rats suggests a role of mineralocorticoids in the cardiac hypertrophy, fibrosis, inflammation, oxidation and diastolic dysfunction induced by isoproterenol treatment in rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background Several studies had demonstrated the involvement of the dorsolateral portion of periaqueductal grey matter (dlPAG) in defensive responses. This region contains a significant number of neurons containing the enzyme nitric oxide synthase (NOS) and previous studies showed that non-selective NOS inhibition or glutamate NMDA-receptor antagonism in the dlPAG caused anxiolytic-like effects in the elevated plus maze. Methods In the present study we verified if the NMDA/NO pathway in the dlPAG would also involve in the behavioral suppression observed in rats submitted to the Vogel conflict test. In addition, the involvement of this pathway was investigated by using a selective nNOS inhibitor, Nω-propyl-L-arginine (N-Propyl, 0.08 nmol/200 nL), a NO scavenger, carboxy-PTIO (c-PTIO, 2 nmol/200 nL) and a specific NMDA receptor antagonist, LY235959 (4 nmol/200 nL). Results Intra-dlPAG microinjection of these drugs increased the number of punished licks without changing the number of unpunished licks or nociceptive threshold, as measure by the tail flick test. Conclusion The results indicate that activation of NMDA receptors and increased production of NO in the dlPAG are involved in the anxiety behavior displayed by rats in the VCT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The orexin system is a key regulator of sleep and wakefulness. In a multicenter, double-blind, randomized, placebo-controlled, two-way crossover study, 161 primary insomnia patients received either the dual orexin receptor antagonist almorexant, at 400, 200, 100, or 50 mg in consecutive stages, or placebo on treatment nights at 1-week intervals. The primary end point was sleep efficiency (SE) measured by polysomnography; secondary end points were objective latency to persistent sleep (LPS), wake after sleep onset (WASO), safety, and tolerability. Dose-dependent almorexant effects were observed on SE , LPS , and WASO . SE improved significantly after almorexant 400 mg vs. placebo (mean treatment effect 14.4%; P < 0.001). LPS (–18 min (P = 0.02)) and WASO (–54 min (P < 0.001)) decreased significantly at 400 mg vs. placebo. Adverse-event incidence was dose-related. Almorexant consistently and dose-dependently improved sleep variables. The orexin system may offer a new treatment approach for primary insomnia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular basis for heparin-induced thrombocytopenia (HIT), a relatively common complication of heparin therapy, is not yet fully understood. We found that pretreatment of platelets with AR-C66096 (formerly FPL 66096), a specific platelet adenosine diphosphate (ADP) receptor antagonist, at a concentration of 100 to 200 nmol/L that blocked ADP-dependent platelet aggregation, resulted in complete loss of platelet aggregation responses to HIT sera. AR-C66096 also totally inhibited HIT serum-induced dense granule release, as judged by measurement of adenosine triphosphate (ATP) release. Apyrase, added to platelets at a concentration that had only minor effects on thrombin- or arachidonic acid-induced aggregation, also blocked completely HIT serum-induced platelet aggregation. Furthermore, AR-C66096 inhibited platelet aggregation and ATP release induced by cross-linking Fc gamma RIIA with specific antibodies. These data show that released ADP and the platelet ADP receptor play a pivotal role in HIT serum-induced platelet activation/aggregation. The thromboxane receptor inhibitor, Daltroban, had no effect on HIT serum-induced platelet activation whereas GPIIb-IIIa antagonists blocked platelet aggregation but had only a moderate effect on HIT serum-induced dense granule release. Pretreatment of platelets with chondroitinases but not with heparinases resulted in concentration dependent inhibition of HIT serum-induced platelet aggregation. These novel data relating to the mechanism of platelet activation induced by HIT sera suggest that the possibility should be examined that ADP receptor antagonists or compounds that inhibit ADP release may be effective as therapeutic agents for the prevention or treatment of complications associated with heparin therapy.