859 resultados para Hydrological forecasting.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
Building services are worth about 2% GDP and are essential for the effective and efficient operations of the building. It is increasingly recognised that the value of a building is related to the way it supports the client organisation’s ongoing business operations. Building services are central to the functional performance of buildings and provide the necessary conditions for health, well-being, safety and security of the occupants. They frequently comprise several technologically distinct sub-systems and their design and construction requires the involvement of numerous disciplines and trades. Designers and contractors working on the same project are frequently employed by different companies. Materials and equipment is supplied by a diverse range of manufacturers. Facilities managers are responsible for operation of the building service in use. The coordination between these participants is crucially important to achieve optimum performance, but too often is neglected. This leaves room for serious faults. The need for effective integration is important. Modern technology offers increasing opportunities for integrated personal-control systems for lighting, ventilation and security as well as interoperability between systems. Opportunities for a new mode of systems integration are provided by the emergence of PFI/PPP procurements frameworks. This paper attempts to establish how systems integration can be achieved in the process of designing, constructing and operating building services. The essence of the paper therefore is to envisage the emergent organisational responses to the realisation of building services as an interactive systems network.
Resumo:
Shell aragonite δ18O values of unionid freshwater mussels are applied as a proxy for past river discharges in the rivers Rhine and Meuse, using a set of nine shells from selected climatic intervals during the late Holocene. A single Meuse shell derives from the Subboreal and its δ18O values are similar to modern values. The Rhine specimens represent the Subboreal, the Roman Warm Period and the Medieval Warm Period (MWP). These shells also show averages and ranges of aragonite δ18O values similar to modern specimens. This indicates that environmental conditions such as Rhine river dynamics, Alpine meltwater input and drought severity during these intervals were similar to the 20th century. These shells do not record subtle centennial to millennial climatic variation due to their relatively short lifespan and the large inter-annual and intra-seasonal variation in environmental conditions. However, they are very suitable for studying seasonal to decadal scale climate variability. The two shells with the longest lifespan appear to show decadal scale variability in reconstructed water δ18O values during the MWP, possibly forced by the North Atlantic Oscillation (NAO), which is the dominant mode of variability influencing precipitation regimes over Europe.
Resumo:
This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example - change in summer runoff at a 2oC increase in global mean temperature varying between -40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1oC, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.
Resumo:
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.
Resumo:
In this paper, we investigate the role of judgement in the formation of forecasts in commercial property markets. The investigation is based on interview surveys with the majority of UK forecast producers, who are using a range of inputs and data sets to form models to predict an array of variables for a range of locations. The findings suggest that forecasts need to be acceptable to their users (and purchasers) and consequently forecasters generally have incentives to avoid presenting contentious or conspicuous forecasts. Where extreme forecasts are generated by a model, forecasters often engage in ‘self‐censorship’ or are ‘censored’ following in‐house consultation. It is concluded that the forecasting process is significantly more complex than merely carrying out econometric modelling, forecasts are mediated and contested within organisations and that impacts can vary considerably across different organizational contexts.
Resumo:
This paper uses data provided by three major real estate advisory firms to investigate the level and pattern of variation in the measurement of historic real estate rental values for the main European office centres. The paper assesses the extent to which the data providing organizations agree on historic market performance in terms of returns, risk and timing and examines the relationship between market maturity and agreement. The analysis suggests that at the aggregate level and for many markets, there is substantial agreement on direction, quantity and timing of market change. However, there is substantial variability in the level of agreement among cities. The paper also assesses whether the different data sets produce different explanatory models and market forecast. It is concluded that, although disagreement on the direction of market change is high for many market, the different data sets often produce similar explanatory models and predict similar relative performance.
Resumo:
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.