946 resultados para Human Visual System


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As tauopatias, grupo onde se inclui a doença de Alzheimer (AD), são caracterizadas pela deposição intracelular de emaranhados neurofibrilares (NFTs), compostos principalmente por formas hiperfosforiladas da proteína Tau, uma proteína que se associa aos microtúbulos. Os mecanismos moleculares subjacentes à neurotoxicidade induzida por Tau não são ainda claros. Drosophila melanogaster tem sido usada para modelar diversas doenças neurodegenerativas humanas, incluindo as tauopatias. Neste trabalho foi usado o sistema visual de Drosophila como modelo para identificar os passos que podem levar à acumulação de Tau em Tauopatias. Durante o desenvolvimento do olho de Drosophila, a expressão ectópica de hTau induz um olho rugoso, em consequência da neurotoxicidade, e que pode ser utilizado para identificar modificadores do fenótipo. A fosfatase codificada por string /cdc25 (stg), um regulador universal da transição G2/M, foi previamente identificada como um supressor da neurotoxicidade associada à expressão da proteina Tau. No entanto, os mecanismos moleculares que estão na base desta interação genética nunca foram estudados, desconhecendo-se também se a atividade fosfatase de Stg/Cdc25 é essencial para modular os níveis de fosforilação de Tau. O objetivo deste projeto consistiu em elucidar os mecanismos que se encontram na base da interação Stg-Tau. Para alcançar este objectivo, usou-se uma abordagem genética e bioquímica. Os resultados obtidos sugerem que Stg é um possível modulador da neurotoxicidade de Tau.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: a) multiply handicapped children have a high incidence of disorders affecting the visual system; b) assessment and management of visual disorders in this group of children presents a complex challenge; c) this study describes the results of visual function assessment in two children with neurological disability over a one-year period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial immune systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has shown how AISs which use multi-level information sources as input data can be used to build effective algorithms for realtime computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neurons in the primary visual cortex that respond to the orientation of visual stimuli were discovered in the late 1950s (Hubel, D.H. & Wiesel, T.N. 1959. J. Physiol. 148:574-591) but how they achieve this response is poorly understood. Recently, experiments have demonstrated that the visual cortex may use the image processing techniques of cross or auto-correlation to detect the streaks in random dot patterns (Barlow, H. & Berry, D.L. 2010. Proc. R. Soc. B. 278: 2069-2075). These experiments made use of sinusoidally modulated random dot patterns and of the so-called Glass patterns - where randomly positioned dot pairs are oriented in a parallel configuration (Glass, L. 1969. Nature. 223: 578-580). The image processing used by the visual cortex could be inferred from how the threshold of detection of these patterns in the presence of random noise varied as a function of the dot density in the patterns. In the present study, the detection thresholds have been measured for other types of patterns including circular, hyperbolic, spiral and radial Glass patterns and an indication of the type of image processing (cross or auto-correlation) by the visual cortex is presented. As a result, it is hoped that this study will contribute to an understanding of what David Marr called the ‘computational goal’ of the primary visual cortex (Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York: Freeman.)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cor é um atributo perceptual que nos permite identificar e localizar padrões ambientais de mesmo brilho e constitui uma dimensão adicional na identificação de objetos, além da detecção de inúmeros outros atributos dos objetos em sua relação com a cena visual, como luminância, contraste, forma, movimento, textura, profundidade. Decorre daí a sua importância fundamental nas atividades desempenhadas pelos animais e pelos seres humanos em sua interação com o ambiente. A psicofísica visual preocupa-se com o estudo quantitativo da relação entre eventos físicos de estimulação sensorial e a resposta comportamental resultante desta estimulação, fornecendo dessa maneira meios de avaliar aspectos da visão humana, como a visão de cores. Este artigo tem o objetivo de mostrar diversas técnicas eficientes na avaliação da visão cromática humana através de métodos psicofísicos adaptativos.