893 resultados para Human Umbilical Vein Endothelial Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that in vitro adenosine enhances histamine release from activated human lung mast cells obtained by enzymic dispersion of lung parenchyma. However, adenosine alone has no effect on histamine release from these cells. Given the evidence for direct activation of mast cells after endobronchial challenge with adenosine and previous studies indicating that mast cells obtained at bronchoalveolar lavage are a better model for asthma studies than those obtained by enzymic dispersion of lung tissue, the histamine-releasing effect of adenosine was examined on lavage mast cells. Bronchoalveolar lavage fluid was obtained from patients attending hospital for routine bronchoscopy (n = 54). Lavage cells were challenged with adenosine or adenosine receptor agonists (20 min, 37 degrees C) and histamine release determined using an automated fluorometric assay. Endogenous adenosine levels were also measured in lavage fluid (n = 9) via an HPLC method. Adenosine alone caused histamine release from ravage mast cells in 37 of 54 patients with a maximal histamine release of 20.56 +/- 2.52% (range 5.2-61 %). The adenosine receptor agonists (R)-N-6-(2-phenylisopropyl)adenosine, 5'-N-ethylcarboxamido-adenosine and CGS21680 also induced histamine release from lavage mast cells. Preincubation of lavage mast cells with the adenosine receptor antagonist xanthine amine congener caused significant inhibition of the response to adenosine (P = 0.007). There was an inverse correlation between endogenous adenosine levels in the lavage fluid and the maximal response to in vitro adenosine challenge of the lavage cells. The findings of the present study indicate a means by which adenosine challenge of the airways can induce bronchoconstriction and support a role for adenosine in the pathophysiology of asthma. The results also suggest that cells obtained from bronchoalveolar ravage fluid may provide the ideal model for the testing of novel, adenosine receptor, targeted therapies for asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:


Purpose. Disturbances to the cellular production of nitric oxide (NO) and superoxide (O2-) can have deleterious effects on retinal vascular integrity and angiogenic signaling. Dietary agents that could modulate the production of these signaling molecules from their likely enzymatic sources, endothelial nitric oxide synthase (eNOS) and NADPH oxidase, would therefore have a major beneficial effect on retinal vascular disease. The effect of ?-3 polyunsaturated fatty acids (PUFAs) on angiogenic signaling and NO/superoxide production in retinal microvascular endothelial cells (RMECs) was investigated.

Methods. Primary RMECs were treated with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 48 hours. RMEC migration was determined by scratch-wound assay, proliferation by the incorporation of BrdU, and angiogenic sprouting using a three-dimensional model of in vitro angiogenesis. NO production was quantified by Griess assay, and phospho-eNOS accumulation and superoxide were measured using the fluorescent probe dihydroethidine. eNOS localization to caveolin-rich microdomains was determined by Western blot analysis after subfractionation on a linear sucrose gradient.

Results. DHA treatment increased nitrite and decreased superoxide production, which correlated with the displacement of eNOS from caveolar subdomains and colocalization with the negative regulator caveolin-1. In addition, both ?-3 PUFAs demonstrated reduced responsiveness to VEGF-stimulated superoxide and nitrite release and significantly impaired endothelial wound healing, proliferation, and angiogenic sprout formation.

Conclusions. DHA improves NO bioavailability, decreases O2- production, and blunts VEGF-mediated angiogenic signaling. These findings suggest a role for ?-3 PUFAs, particularly DHA, in maintaining vascular integrity while reducing pathologic retinal neovascularization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 67kDa laminin receptor (67LR) plays an important role in vascular cell function and dysfunction. The present study has examined 67LR expression in retinal microvascular endothelial cells after exposure to AGEs. Retinal microvascular endothelial cells were exposed to either AGE-BSA, or were grown on methylglyoxal-modified laminin or Matrigel (TM) and expression of 67LR analysed by Western Blotting and RT-PCR/Southern blotting. Western blotting of plasma membrane and RT-PCR/Southern blotting revealed a significant upregulation of 67LR protein/mRNA expression after exposure to AGEs (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sought to determine if hyperglycaemia is responsible for increased retinal vascular endothelial-cell (RVEC) endocytosis in diabetes and to assess the role of nonenzymatic glycosylation in mediation of this novel endothelial-cell pathology. RVECs were propagated in media containing either 5 or 25 mmol/l glucose for up to 10 days after which they were exposed to the protein tracer horseradish peroxidase for 30 min. The level of RVEC endocytosis was quantified in intact cell monolayers by electron microscopic stereology, and in cell lysates by a simple spectrophotometric method. The effect of the nonenzymatic glycosylation inhibitors, aminoguanidine and D-lysine, on high-glucose medium induced changes in RVEC endocytosis was tested by inclusion of these agents in the culture medium. RVECs exposed to 25 mmol/l glucose showed a stepwise increase in endocytosis of horseradish peroxidase culminating in a two- to threefold increase after 10 days. Endocytosis returned to normal levels after a further 10 days in 5 mmol/l glucose medium. The increase in RVEC endocytosis was markedly reduced, but not completely normalised, by aminoguanidine and D-lysine. Exposure of cultured RVECs to 25 mmol/l glucose causes an increase in endocytosis of similar magnitude to that experienced by RVEC in early diabetes, and implicates hyperglycaemia in the latter situation. A significant component of the increase in RVEC endocytosis appears to be mediated by nonenzymatic glycosylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of human gastrointestinal stromal tumors (GIST) are driven by activating mutations in the protooncogene KIT, a tyrosine kinase receptor. Clinical treatment with imatinib targets the kinase domain of KIT, but tumor regrowth occurs as a result of them development of resistant mutations in the kinase active site. An alternative small-molecule approach to GIST therapy is described, in which the KIT gene is directly targeted, and thus, kinase resistance may be circumvented. A naphthalene diimide derivative has been used to demonstrate the concept of dual quadruplex targeting. This compound strongly stabilizes both telomeric quadruplex DNA and quadruplex sites in the KIT promoter in vitro. It is shown here that the compound is a potent inducer of growth arrest in a patient-derived GIST cell line at a concentration (similar to 1 mu M) that also results in effective inhibition of telomerase activity and almost complete suppression of KIT mRNA and KIT protein expression. Molecular modeling studies with a telomeric quadruplex have been used to rationalize aspects of the experimental quadruplex melting data.