941 resultados para Hoya fungi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular enzymes that white-rot fungi secrete during lignin decay have been proposed as promising agents for oxidizing pollutants. We investigated the abilities of the white-rot fungi Punctularia strigosozonata, Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus to degrade Number 6 fuel oil in wood sawdust cultures. Our goals are to advise bioremediation efforts at a brownfield redevelopment site on the Blackstone River in Grafton, Massachusetts and to contribute to the understanding of decay mechanisms in white-rot fungi. All species tested degraded a C10 alkane. When cultivated for 6 months, Irpex lacteus, T. biforme, P. radiata, T. versicolor and P. ostreatus also degraded a C14 alkane and the polycyclic aromatic hydrocarbon phenanthrene. Gene expression analyses of P. strigosozonata indicate differential gene expression in the presence of Number 6 oil and on pine and aspen sawdust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nutrient uptake response of ectomycorrhizal fungi (ECM) to different nutrient substrates is a driving force in ecosystem nutrient cycling. We hypothesized that taxa from low nitrogen (N) soils would be more likely to use organic N compared to taxa from high N soils, and that taxa from high N would be more likely to use organic phosphorus (P) sources when compared to the ECM dominant in low N soils. This study focuses on the growth response of ECM species collected over a N gradient to different forms of N and P nutrient substrates and whether ECM growth in a particular nutrient source can be related to how the ECM fungi have responded to elevated N in the field. This study found a mixed ECM response to organic and inorganic N and P treatments. High affinity N taxa expected to respond positively to inorganic N produced the phosphatase enzyme to take up organic phosphorus, but not all low affinity N taxa expected to negatively respond to organic P produced the protease enzyme to take up organic N. Interspecific variability was displayed by some high and low affinity N taxa responded and ECM intraspecific variability in response to N and P treatments was also noted. Future analysis of may show more evident ECM response patterns to inorganic and organic forms of N and P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use and land use change affect deadwood amount, quality and associated biodiversity in forest ecosystems. Old growth or virgin forests, which are exceptionally rare in temperate Europe harbor more deadwood and associated fungal species than managed forests. Whether and how more recent abandonment of management, to reestablish more natural forests, affects deadwood amount and fungal diversity on deadwood is unknown. Our main aim was to compare deadwood amount, characteristics and deadwood inhabiting fungi in differently managed forest types typical for large areas of Central Europe. We sampled deadwood inhabiting fungi on 27 forest plots of 400 m2 each in three geographically distant regions in Germany. Three forest management types, namely managed coniferous, managed deciduous and unmanaged deciduous forests, were represented by nine plots each. In autumn 2008 we collected all fungal fruiting bodies on deadwood >7 cm of diameter. We found deadwood amounts and fungal species numbers in unmanaged forests to be lower than in managed forests, which we attributed to the lack of natural tree death during the short time since management abandonment of usually 10–30 years. However, rarefaction analysis among deadwood items in forest plots indicated a slightly higher species density in unmanaged forests, which may be the first signal of a positive effect on fungal species richness on deadwood after management was abandoned. Although the three study regions span a large geographical gradient, we did not detect differences in the fungal species composition or in deadwood amounts and patterns, which reflects the wide distribution of this group of organisms and points to consistent management procedures among study regions. A very clear composition difference however occurred between deciduous and coniferous wood showing species substrate specialization. We conclude that the amount of deadwood is the main driver of deadwood fungal species richness, and substrate diversity in terms of various decay degrees, deadwood tree species and deadwood size are also important. Thus, to promote species richness of deadwood fungi it is vital to enhance deadwood amounts and diversity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disentangling biotic and abiotic drivers of wild mushroom fruiting is fraught with difficulties because mycelial growth is hidden belowground, symbiotic and saprotrophic supply strategies may interact, and myco-ecological observations are often either discontinuous or too short. Here, we compiled and analyzed 115 417 weekly fungal fruit body counts from permanent Swiss inventories between 1975 and 2006. Mushroom fruiting exhibited an average autumnal delay of 12 days after 1991 compared with before, the annual number of fruit bodies increased from 1801 to 5414 and the mean species richness doubled from 10 to 20. Intra- and interannual coherency of symbiotic and saprotrophic mushroom fruiting, together with little agreement between mycorrhizal yield and tree growth suggests direct climate controls on fruit body formation of both nutritional modes. Our results contradict a previously reported declining of mushroom harvests and propose rethinking the conceptual role of symbiotic pathways in fungi-host interaction. Moreover, this conceptual advancement may foster new cross-disciplinary research avenues, and stimulate questions about possible amplifications of the global carbon cycle, as enhanced fungal production in moist mid-latitude forests rises carbon cycling and thus increases greenhouse gas exchanges between terrestrial ecosystems and the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

•Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. •We followed symbiotic carbon (C)–N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. •We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. •These results were tested in a model for C–N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When comparing the transporters of three completely sequenced eukaryotic genomes - Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens - transporter types can be distinguished according to phylogeny, substrate spectrum, transport mechanism and cell specificity. The known amino acid transporters belong to five different superfamilies. Two preferentially Na+-coupled transporter superfamilies are not represented in them yeast and Arabidopsis genomes, whereas the other three groups, which often function as H+-coupled systems, have members in all investigated genomes. Additional superfamilies exist for organellar transport, including mitochondrial and plastidic carriers. When used in combination with phylogenetic analyses, functional comparison might aid our prediction of physiological functions for related but uncharacterized open reading frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Many plants form associations with arbuscular mycorrhizal fungi (AMF) because they profit from improved phosphorus nutrition and from protection against pathogens. Whereas mycorrhiza-induced pathogen protection is well understood in agricultural plant species, it is rarely studied in wild plants. As many pathogens infest plants in the first days after germination, mycorrhiza-induced pathogen protection may be especially important in the first few weeks of plant establishment. Here, we investigated interacting effects of {AMF} and the seedling pathogen Pythium ultimum on the performance of six- to seven-week-old seedlings of six wild plant species of the family Asteraceae in a full factorial experiment. Plant species differed in their response to AMF, the pathogen and their interactions. {AMF} increased and the pathogen decreased plant biomass in one and three species, respectively. Two plant species were negatively affected by {AMF} in the absence, but positively or not affected in the presence of the pathogen, indicating protection by AMF. This mycorrhiza-induced pathogen protection is especially surprising as we could not detect mycorrhizal structure in the roots of any of the plants. Our results show that even seedlings without established intraradical hyphal network can profit from AMF, both in terms of growth promotion in the absence of a pathogen and pathogen protection. The function of {AMF} is highly species-specific, but tends to be similar for more closely related plant species, suggesting a phylogenetic component of mycorrhizal function. Further studies should test a wider range of plant species, as our study was restricted to one plant family, and investigate whether plants profit from early mycorrhizal benefits in the long term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von P. Hennings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von P. Hennings