940 resultados para Holm Steinhafel, Courtney
Resumo:
To provide an integrated perspective on mineral particle effects in salmonids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to daily mica particle pulses for 8 and 24 days. On day 8, increased immature erythrocyte proportions indicated a previous stress response. This response was absent on day 24, on which condition factor as well as plasma protein and aspartate aminotransferase activity decreased. The latter two related negatively to the hepato-somatic index, suggesting metabolic adaptations. The hepato-somatic index increased on days 8 and 24, while spleen-somatic index increased on day 24. No histopathological damage occurred in gills, liver, spleen, or kidney. However, splenic melano-macrophages increased on both days, and hyaline degenerations of kidney tubular cells were apparent on day 24. Overall, particle pulses affected rainbow trout more via turbidity rather than by physical damage. We conclude that (i) rainbow trout may adapt to sediment pulses as early as 8 days of exposure and (ii) particle pulses over 24 days can cause structural and metabolic changes in rainbow trout, even when gill damage is absent and apical effects on condition are moderate.
Resumo:
OBJECTIVES: To determine the effect on resin composite-to-dentin bond strength of incorporation of an acidic tin-chloride pretreatment in two adhesive systems. MATERIALS AND METHODS: Human molars were ground to expose mid-coronal dentin. For microtensile bond strength (μTBS) testing, dentin was treated with Optibond FL or Clearfil SE according to one of six protocols (n = 22/group). Group 1: Phosphoric acid etching, Optibond FL Prime, Optibond FL Adhesive (manufacturer's instructions; control); Group 2: Tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 3: Phosphoric acid etching, tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 4: Clearfil SE Primer, Clearfil SE Bond (manufacturer's instructions; control); Group 5: Phosphoric acid etching, Clearfil SE Primer, Clearfil SE Bond; and Group 6: Tin-chloride pretreatment, Clearfil SE Primer, Clearfil SE Bond. The molars were then built up with resin composite (Clearfil Majesty Esthetic). After storage (1 week, 100 % humidity, 37 °C) the μTBS was measured and failure mode was determined. Additionally, pretreated dentin surfaces were evaluated using SEM and EDX. The μTBS results were analyzed statistically by a Welch Two Sample t-test and a Kruskal-Wallis test followed by exact Wilcoxon rank sum tests with Bonferroni-Holm adjustment for multiple testing (α = 0.05). RESULTS: When Optibond FL was used, partial or total replacement of phosphoric acid with tin-chloride decreased μTBS significantly. In contrast, when Clearfil SE was used, inclusion of a tin-chloride pretreatment in the adhesive procedure increased μTBS significantly. CONCLUSIONS: Tin-chloride pretreatment had a beneficial influence on the bond promoting capacity of the MDP-containing adhesive system Clearfil SE.
Resumo:
To examine the behavior of the estrogenic biomarker vitellogenin (VTG) under the combined impact of estrogens and pathogens, parasite-infected or noninfected rainbow trout were exposed to two doses of 17beta-estradiol (E2). Infected and E2-exposed fish showed significantly lower hepatic VTG mRNA levels than healthy fish. Transcriptome data suggest that this was due to energetic constraints. Reduced responsiveness of the VTG biomarker in parasitized fish might obscure detection of low-level field exposure.