877 resultados para Highway infrastructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supplement to HR-388 - "Total Cost of Transportation Analysis of Road and Highway Issues"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the past several year Kossuth County has had a scheduled maintenance program of bituminous seal coating. This program has been used to maintain the 467 miles of asphaltic concrete surfaced roads in Kossuth County. Since most of the experience that Kossuth County had in seal coating was with cutback asphalt, it was decided to include the use of emulsified asphalt in Kossuth County's 1980 seal coat program. Federal Demonstration Project Funds were requested from the Federal Highway Administration to study the use of emulsified asphalt and funding was granted under Demonstration Project No. 55,:Asphalt Emulsions for Highway Construction." Items studied were design and construction procedure cost of alternate material, energy consumption and environmental considerations. A construction contract was awarded to Everds Brothers, Inc. of Algona, Iowa, on July 1, 1980. There were four bidders on the 54.5 miles of seal coating that was let. A map showing the location of the seal coating projects is shown in Appendix A, and a copy of the contract is shown in Appendix B. The contractor started the project on July 11, 1980 and completed the project on August 1, 1980. Construction inspection and follow-up inspections of the project were conducted by personnel of the Kossuth County Engineer's Office and testing of the materials, friction testing and road rater testing were conducted by the Material's Department of the Iowa Department of Transportation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1982 the Iowa DOT allowed a successful bidder the option of submitting materials and proportions using fly ash to produce a portland cement concrete (PCC) paving mixture to meet a specified compressive strength. The contractor, Irving F. Jensen, received approval for the use of a concrete mixture utilizing 500 lbs. of portland cement and 88 lbs. of fly ash as a replacement of 88 lbs. of portland cement. The PCC mixture was utilized on the Muscatine County US 61 relocation bypass paved as project F-61-4(32)--20-70. A Class "C" fly ash obtained from the Chillicothe electric generating plant approximately 100 miles away was used in the project. This use of fly ash in lieu of portland cement resulted in a cost savings of $64,500 and an energy savings of approximately 16 billion BTU. The compressive strength of this PCC mixture option was very comparable to concrete mixtures produced without the use of fly ash. The pavement has been performing very well. The substitution of fly ash for 15% of the cement has been allowed as a contractor's option since 1984. Due to the cost savings, it has been used in almost all Iowa PCC paving since that time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report describes the state of the art video equipment used and experiences gained from the 6,800 mile field test. The first objective of this project was to determine if laser disc equipment could capture and store usable roadway images while operating in a mobile environment. The second objective was to evaluate methods of using optical disc storage and retrieval features to enhance highway planning and design function. Several highway departments have attempted to use video technology to replace the traditional 16 and 35 mm film format used in photologging. These attempts have met with limited success because of the distortion caused by video technology not being capable of dealing with highway speeds. The distortion has caused many highway signs to be unreadable and, therefore, clients have labeled the technology unusable. Two methods of using optical laser disc storage and retrieval have been successfully demonstrated by Wisconsin and Connecticut Departments of Transportation. Each method provides instantaneous retrieval and linking of images with other information. However, both methods gather the images using 35 mm film techniques. The 35 mm film image is then transferred to laser disc. Eliminating the film conversion to laser disc has potential for saving $4 to $5 per logging mile. In addition to a cost savings, the image would be available immediately as opposed to delays caused by film developing and transferring to laser disc. In June and November of 1986 Iowa DOT staff and cooperating equipment suppliers demonstrated the concept of direct image capture. The results from these tests were promising and an FHWA Demonstration program established. Since 1986 technology advancements have been incorporated into the design that further improve the image quality originally demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents an overview of where the computerized highway information system is now, and its status as a planning and programming tool for state highway agencies. A computerized highway information system is simply a computer linked system which can be used by many divisions of a transportation agency to obtain information to meet data reporting, analyses or other informational needs. The description of the highway information system includes: current use and status, applications, organization and system development, benefits and problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of bridge approach slabs which have failed due to a loss of support from embankment fill consolidation or erosion can be particularly challenging in urban areas where lane closures must be minimized. Precast prestressed concrete pavement is a potential solution for rapid bridge approach slab reconstruction which uses prefabricated pavement panels that can be installed and opened to traffic quickly. To evaluate this solution, the Iowa Department of Transportation constructed a precast prestressed approach slab demonstration project on Highway 60 near Sheldon, Iowa in August/September 2006. Two approach slabs at either end of a new bridge were constructed using precast prestressed concrete panels. This report documents the successful development, design, and construction of the precast prestressed concrete bridge approach slabs on Highway 60. The report discusses the challenges and issues that were faced during the project and presents recommendations for future implementation of this innovative construction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal variations in ground temperature and moisture content influence the load carrying capacity of pavement subgrade layers. To improve pavement performance, pavement design guidelines require knowledge of environmental factors and subgrade stiffness relationships. As part of this study, in-ground instrumentation was installed in the pavement foundation layers of a newly constructed section along US Highway 20 near Fort Dodge, Iowa, to monitor the seasonal variations in temperature, frost depth, groundwater levels, and moisture regime. Dynamic cone penetrometer (DCP), nuclear gauge, and Clegg hammer tests were performed at 64 test points in a 6-ft x 6-ft grid pattern to characterize the subgrade stiffness properties (i.e., resilient modulus) prior to paving. The purpose of this paper is to present the field instrumentation results and the observed changes in soil properties due to seasonal environmental effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several strategies are available to the Iowa Department of Transportation (IaDOT) for limiting deterioration due to chloride-induced corrosion of embedded reinforcing bars in concrete bridge decks. While the method most commonly used throughout the Midwestern United States is to construct concrete bridge decks with fusion-bonded epoxy-coated reinforcing bars, galvanized reinforcing bars are an available alternative. Previous studies of the in situ performance of galvanized reinforcing bars in service in bridge decks have been limited. IaDOT requested that Wiss, Janney, Elstner Associates, Inc. (WJE) perform this study to gain further understanding of the long-term performance of an Iowa bridge deck reinforced with galvanized reinforcing bars. This study characterized the condition of a bridge deck with galvanized reinforcing bars after about 36 years of service and compared that performance to the expected performance of epoxy-coated or uncoated reinforcing bars in similar bridge construction. For this study, IaDOT selected the Iowa State Highway 92 bridge across Drainage Ditch #25 in Louisa County, Iowa (Structure No. 5854.5S092), which was constructed using galvanized reinforcing bars as the main deck reinforcing. The scope of work for this study included: field assessment, testing, and sampling; laboratory testing and analysis; analysis of findings; service life modeling; and preparation of this report. In addition, supplemental observations of the condition of the galvanized reinforcing bars were made during a subsequent project to repair the bride deck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contractors, engineers, owners and manufacturers want to be certain that a new product or procedure will yield beneficial results when compared to the current method of construction. The following research was conducted in order to compare the performance of epoxy coated dowel bars to dowel bars of alternative shapes and materials such as stainless steel and glass fiber reinforced polymer (GFRP). Research was also done on the effect that dowel bar spacing has on the performance of concrete pavements. Four phases of this research are described in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a study to evaluate Geopier® soil reinforcement technology in transportation construction. Three projects requiring settlement control were chosen for evaluation—an embankment foundation, a box culvert, and a bridge approach fill. For each project, construction observations, in situ soil testing, laboratory material characterization, and performance monitoring were carried out. For the embankment foundation project, Geopier elements were installed within and around an abutment footprint for the new I-35 overpass at the US Highway 5/Interstate 35 interchange in Des Moines, Iowa. Although the main focus of this investigation was to evaluate embankment foundation reinforcement using Geopier elements, a stone column reinforced soil provided an opportunity to compare systems. In situ testing included cone penetration tests (CPTs), pressuremeter tests (PMTs), Ko stepped blade tests, and borehole shear tests (BSTs), as well as laboratory material testing. Comparative stiffness and densities of Geopier elements and stone columns were evaluated based on full-scale modulus load tests and standard penetration tests. Vibrating wire settlement cells and total stress cells were installed to monitor settlement and stress concentration on the reinforcing elements and matrix soil. Settlement plates were also monitored by conventional optical survey methods. Results show that the Geopier system and the stone columns performed their intended functions. The second project involved settlement monitoring of a 4.2 m wide x 3.6 m high x 50 m long box culvert constructed beneath a bridge on Iowa Highway 191 south of Neola, Iowa. Geopier elements were installed to reduce total and differential settlement while ensuring the stability of the existing bridge pier foundations. Benefits of the box culvert and embankment fill included (1) ease of future roadway expansion and (2) continual service of the roadway throughout construction. Site investigations consisted of in situ testing including CPTs, PMTs, BSTs, and dilatometer tests. Consolidated drained triaxial compression tests, unconsolidated undrained triaxial compression test, oedometer tests, and Atterberg limit tests were conducted to define strength and consolidation parameters and soil index properties for classification. Vibrating wire settlement cells, total stress cells, and piezometers were installed for continuous monitoring during and after box culvert construction and fill placement. This project was successful at controlling settlement of the box culvert and preventing downdrag of the bridge foundations, but could have been enhanced by reducing the length of Geopier elements at the ends of the box culvert. This would have increased localized settlement while reducing overall differential settlement. The third project involved settlement monitoring of bridge approach fill sections reinforced with Geopier elements. Thirty Geopier elements, spaced 1.8 m apart in six rows of varying length, were installed on both sides of a new bridge on US Highway 18/218 near Charles City, Iowa. Based on the results of this project, it was determined that future applications of Geopier soil reinforcement should consider extending the elements deeper into the embankment foundation fill, not just the fill itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road dust is caused by wind entraining fine material from the roadway surface and the main source of Iowa road dust is attrition of carbonate rock used as aggregate. The mechanisms of dust suppression can be considered as two processes: increasing particle size of the surface fines by agglomeration and inhibiting degradation of the coarse material. Agglomeration may occur by capillary tension in the pore water, surfactants that increase bonding between clay particles, and cements that bind the mineral matter together. Hygroscopic dust suppressants such as calcium chloride have short durations of effectiveness because capillary tension is the primary agglomeration mechanism. Somewhat more permanent methods of agglomeration result from chemicals that cement smaller particles into a mat or larger particles. The cements include lignosulfonates, resins, and asphalt products. The duration of the cements depend on their solubility and the climate. The only dust palliative that decreases aggregate degradation is shredded shingles that act as cushions between aggregate particles. It is likely that synthetic polymers also provide some protection against coarse aggregate attrition. Calcium chloride and lignosulfonates are widely used in Iowa. Both palliatives have a useful duration of about 6 months. Calcium chloride is effective with surface soils of moderate fine content and plasticity whereas lignin works best with materials that have high fine content and high plasticity indices. Bentonite appears to be effective for up to two years and works well with surface materials having low fines and plasticity and works well with limestone aggregate. Selection of appropriate dust suppressants should be based on characterization of the road surface material. Estimation of dosage rates for potential palliatives can be based on data from this report, from technical reports, information from reliable vendors, or laboratory screening tests. The selection should include economic analysis of construction and maintenance costs. The effectiveness of the treatment should be evaluated by any of the field performance measuring techniques discussed in this report. Novel dust control agents that need research for potential application in Iowa include; acidulated soybean oil (soapstock), soybean oil, ground up asphalt shingles, and foamed asphalt. New laboratory evaluation protocols to screen additives for potential effectiveness and determine dosage are needed. A modification of ASTM D 560 to estimate the freeze-thaw and wet-dry durability of Portland cement stabilized soils would be a starting point for improved laboratory testing of dust palliatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to