933 resultados para Highway engineering
Resumo:
Este Trabalho refere-se ao Projecto de Execução de Fundações e Estruturas de uma Ponte Rodoviária em betão armado pré-esforçado, realizado no âmbito do Trabalho Final de Mestrado em Engenharia Civil – Especialização em Estruturas, do Instituto Superior de Engenharia de Lisboa. O Projecto de Execução é composto de Peças Escritas e Peças Desenhadas. Nas Peças Escritas estão incluídos: Memória Justificativa e Descritiva; Cálculos Justificativos e Anexos. A ponte é composta por dois tabuleiros paralelos com 10,28m de largura cada um e afastados entre si de 0,10m. A obra é constituída de 8 tramos; os tramos correntes com 31m de comprimento e os tramos extremos com 25 e 20m de comprimento, perfazendo um comprimento total de 231m. A obra foi parcialmente isolada dos sismos pela introdução, em todos os pilares, de aparelhos de apoio de elevado amortecimento sísmico do tipo HDRB (High Damping Rubber Bearings). Encontram-se particularmente discriminadas e detalhadas neste projecto as seguintes situações: - Cálculo do Pré-esforço e respectivas perdas; - Acção das sobrecargas rodoviárias; - Diferença de comportamento da obra na entrada em serviço e no longo prazo; - Análise sísmica e do isolamento sísmico; - Estudo dos efeitos diferidos: retracção e fluência. Tendo as abordagens de cálculo e as verificações de segurança seguido a regulamentação nacional em vigor, nomeadamente RSA e REBAP, foi no entanto feita uma aproximação às regras do “Capacity Design” previstas no EC8, em que se privilegia a actuação do projectista sobre o comportamento da estrutura, procurando uma resposta não linear da mesma, visando garantir que: - A rotura não ocorrerá nos elementos de fundação; - Nos pilares a dissipação de energia se faz através de rótulas plásticas, evitando-se roturas associadas a esforços transversos. A aplicação destas regras neste Projecto demonstrou haver um agravamento substancial na definição dos esforços a que devem resistir alguns dos componentes da estrutura, designadamente os pilares e as fundações, originando soluções de secções de betão e armaduras bem mais exigentes do que aqueles que resultariam da simples verificação de segurança, pela comparação entre esforços actuante e esforços resistentes “secção a secção”, imposta pela actual regulamentação nacional.
Resumo:
CoDeSys "Controller Development Systems" is a development environment for programming in the area of automation controllers. It is an open source solution completely in line with the international industrial standard IEC 61131-3. All five programming languages for application programming as defined in IEC 61131-3 are available in the development environment. These features give professionals greater flexibility with regard to programming and allow control engineers have the ability to program for many different applications in the languages in which they feel most comfortable. Over 200 manufacturers of devices from different industrial sectors offer intelligent automation devices with a CoDeSys programming interface. In 2006, version 3 was released with new updates and tools. One of the great innovations of the new version of CoDeSys is object oriented programming. Object oriented programming (OOP) offers great advantages to the user for example when wanting to reuse existing parts of the application or when working on one application with several developers. For this reuse can be prepared a source code with several well known parts and this is automatically generated where necessary in a project, users can improve then the time/cost/quality management. Until now in version 2 it was necessary to have hardware interface called “Eni-Server” to have access to the generated XML code. Another of the novelties of the new version is a tool called Export PLCopenXML. This tool makes it possible to export the open XML code without the need of specific hardware. This type of code has own requisites to be able to comply with the standard described above. With XML code and with the knowledge how it works it is possible to do component-oriented development of machines with modular programming in an easy way. Eplan Engineering Center (EEC) is a software tool developed by Mind8 GmbH & Co. KG that allows configuring and generating automation projects. Therefore it uses modules of PLC code. The EEC already has a library to generate code for CoDeSys version 2. For version 3 and the constant innovation of drivers by manufacturers, it is necessary to implement a new library in this software. Therefore it is important to study the XML export to be then able to design any type of machine. The purpose of this master thesis is to study the new version of the CoDeSys XML taking into account all aspects and impact on the existing CoDeSys V2 models and libraries in the company Harro Höfliger Verpackungsmaschinen GmbH. For achieve this goal a small sample named “Traffic light” in CoDeSys version 2 will be done and then, using the tools of the new version it there will be a project with version 3 and also the EEC implementation for the automatically generated code.
Resumo:
ENEGI 2013: Atas do 2º Encontro Nacional de Engenharia e Gestão Industrial, Universidade de Aveiro, 17 e 18 de maio de 2013, Aveiro, Portugal.
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia na Área de Especialização em Estruturas
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Área de Especialização em Vias de Comunicação e Transportes
Resumo:
Conferência: 2nd Experiment at International Conference (Exp at)- Univ Coimbra, Coimbra, Portugal - Sep 18-20, 2013
Resumo:
Trabalho de Projecto para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.
Resumo:
WorldFIP is standardised as European Norm EN 50170 - General Purpose Field Communication System. Field communication systems (fieldbuses) started to be widely used as the communication support for distributed computer-controlled systems (DCCS), and are being used in all sorts of process control and manufacturing applications within different types of industries. There are several advantages in using fieldbuses as a replacement of for the traditional point-to-point links between sensors/actuators and computer-based control systems. Indeed they concern economical ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation and distribution of the processing power over the field. Typically DCCS have real-time requirements that must be fulfilled. By this, we mean that process data must be transferred between network computing nodes within a maximum admissible time span. WorldFIP has very interesting mechanisms to schedule data transfers. It explicit distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis for guaranteeing the real-time requirements of both types of traffic. A major contribution is made in the analysis of worst-case response time of aperiodic transfer requests.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
The advent of Wireless Sensor Network (WSN) technologies is paving the way for a panoply of new ubiquitous computing applications, some of them with critical requirements. In the ART-WiSe framework, we are designing a two-tiered communication architecture for supporting real-time and reliable communications in WSNs. Within this context, we have been developing a test-bed application, for testing, validating and demonstrating our theoretical findings - a search&rescue/pursuit-evasion application. Basically, a WSN deployment is used to detect, localize and track a target robot and a station controls a rescuer/pursuer robot until it gets close enough to the target robot. This paper describes how this application was engineered, particularly focusing on the implementation of the localization mechanism.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
A significant number of process control and factory automation systems use PROFIBUS as the underlying fieldbus communication network. The process of properly setting up a PROFIBUS network is not a straightforward task. In fact, a number of network parameters must be set for guaranteeing the required levels of timeliness and dependability. Engineering PROFIBUS networks is even more subtle when the network includes various physical segments exhibiting heterogeneous specifications, such as bus speed or frame formats, just to mention a few. In this paper we provide underlying theory and a methodology to guarantee the proper operation of such type of heterogeneous PROFIBUS networks. We additionally show how the methodology can be applied to the practical case of PROFIBUS networks containing simultaneously DP (Decentralised Periphery) and PA (Process Automation) segments, two of the most used commercial-off-the-shelf (COTS) PROFIBUS solutions. The importance of the findings is however not limited to this case. The proposed methodology can be generalised to cover other heterogeneous infrastructures. Hybrid wired/wireless solutions are just an example for which an enormous eagerness exists.
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.