956 resultados para Hierarchical analytical process
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.
Resumo:
The micro-chemical/mineralogical composition of samples of grey-paste imitations of Italic Late Republican black gloss tableware displaying a particular kind of lozenge-shaped decoration (“Losanga pottery”) from Portuguese and Spanish archaeological sites in SW Iberia has been analysed by BSEM + EDS, μXRD, Powder XRD, Portable XRF and μRaman spectroscopy. “Losanga” decorated ceramics have been found throughout the Western Mediterranean. Most of the sherds display a green-brown to greyish-black engobe at the surface resembling the gloss found in Attic pottery from Classical Greece. The overall chemical, mineralogical and fossiliferous homogeneities of the ceramic paste show common features (low K-feldspar/plagioclase ratio, high Ca content, abundance of well-preserved fragments of foraminifera microfossils) that indicate low firing conditions in the kiln ranging from 650 to 900 °C. With respect to the ceramic body, analytical results confirm an enrichment in the surface gloss layer of iron, potassium and aluminium and a depletion in silicon and calcium; the very fine grain size of the surface coating suggests elutriation of iron oxide-rich clays as confirmed by the presence of magnetite, maghemite and goethite in μ-XRD scan. Chemical and mineralogical data also suggest that the firing process was performed in a 600–850 °C temperature range, adopting the well-known technique of alternating oxidizing and reducing firing conditions largely employed at the time. The analytical results, while compatible with the archaeological hypothesis of a common provenance of the raw materials for pottery production from the Guadalquivir valley workshops cannot be considered conclusive due to the similarity in the geological substrate in the two SW Iberian regions under study.
Resumo:
The study of textiles is an open area of scientific research, which for its variety of material components and physical chemical diversity of conditions, makes a field of interest for scientific studies in the cultural heritage field. Archaeological/historical textiles offer the possibility to carry out studies on organic materials such as fibers, adhesion elements, dyes, paper, etc., as well as on inorganic compounds for instance metals, alloys, precious stones and other added ornamentation. That variety of composition, allow to use a combination of analytical techniques to solve the questions coming from the object in an archaeometric research. One kind of textile object that provides a valuable cultural information because of its linguistic representation employed by its carrier societies, are the flags/banners/emblems, objects made with a nonverbal communication purpose. As long as depending on the use and/or purpose of each object, varies both the materials/techniques used in its production and its iconography (style, color, emblem, shape), its study gives the possibility to extract information through their materials and manufacturing techniques about a temporal-spatial frame, a particular event or a specific character. The flags/banners have been used since the eleventh century as representative objects of power, hierarchy, social or military organization, or as communicative media. The use of these objects has been spread throughout the world, possibly due to its easy interpretation and/or appropriation by different societies, making it part of their own culture. The flags as symbols of territorial control, using emblems that represent a family, order or army, were introduced to the New World (America) with the arrival of the European conquerors at the end of the fifteenth century. Flags/banners representing the Royal dominion over conquered territories, the Catholic Church and conquistadors’ armies were the first to arrive. One of those flags that have endured over time, that have an invaluable cultural meaning for both American and Iberian societies, is the so-called Francisco Pizarro’s Banner of Arms. It is a textile object with metal threads decoration over a Royal emblem. According to historical sources, this object was used by Francisco Pizarro in 1532 on the conquest process of Peru, after received the permission by King Charles V to on behalf of him, to conquer the lands of the New World today known as Peru. After Pizarro’s control of the Inca territory, it is believed that Pizarro left his banner on top of the Inca’s Sun’s Temple as symbol of his rule. Centuries later, in the America libertarian campaigns, General Sucre, military at charge of the independence army in Peru, reports have found what he considered the Pizarro’s Banner, sending it to Bogotá as a symbol of victory, being kept since that time until today by the National Museum of Colombia. Due to historical discrepancies in the different movements of the so-called Pizarro’s Banner of Arms, its real meaning has been under discussion and because of the passage of time its physical condition has suffer deterioration. That is because its scientific study is now an interesting case study to respond to both historical and conservation questions of it. Through a collaboration with the National Museum of Colombia, a set of 25 samples of so-called Pizarro’s Banner of Arms were collected, covering the various components and areas from the object of study. These samples were subjected to analytical studies for physical and chemical characterization. Microscopic observation, VSEM-EDS analysis, Raman spectroscopy, chromatographic analysis (HPLC-MS, GCMS) and radiocarbon dating were done. Similarly, was sought through a direct in situ physical inspection to the object and through a research into historical sources, adequate information to solve the object’s problems. Results obtained allowed to identify as silk the textile used in the elaboration of the Banner’s fabric, as well as the use of natural dyes for dyeing the fibers used on the emblem: use of cochineal and brazil wood as a source of red, luteolin plant-based for yellow color, indigotine plant-based for blue, and a mixture of yellow and blue dyes for green were identified. Similarly, the use of animal glue in the manufacturing process and the use of rag paper was evident. The metal threads study from the Banner give a confirmation to a silver core wire gilded with a thin gold sheet, being flattened and entwined with silk threads for their use. Finally, using the radiocarbon results, it was possible to postulate with huge accuracy that the Banner date manufacture was between the XV-XVI century and subject to restoration processes with addition of textiles in modern times. Together with, was evident that the state of degradation of the fabric is due to natural degradation in the silk fibers, having that its color has faded and its mechanical properties decreased, leading to loss of rigidity and disappearance of the physical structure. Similarly, it was clear the original colors of the emblem and highlight problems of detachment of paper due to crystallization of the adhesive. In the same way, was found that the metal threads suffer corrosion by sulfur and detachment of its crystals. Finally, combining the analytical results and the historical sources data found from the so-called Francisco Pizarro’s Banner of Arms, allows to postulate that its manufacture process was done in Europe employing precious materials to obtain a long-life object with a deep message for its viewers. Also, the data obtained helps to support the possible idea that the object was employed by Francisco Pizarro in the Peru conquest process. However, by the symbols present in the object, its elaboration date and materials, this object its clearly unique in its kind, and the most important, by its linguistic message, does not represent to Francisco Pizarro or his army, meanwhile, represents the Spanish crown. Therefore, instead to be labeled as Francisco Pizarro’s Banner of Arms, it should be called the Colonial Royal Banner of Charles V in the New World; RESUMEN: El estudio de textiles es un área abierta de investigación científica, la cual por su variedad de componentes materiales y la diversidad de condiciones físico-químicas presentes en estos objetos, lo hace un campo de interés para estudios científicos en el patrimonio cultural. Los textiles arqueológicos/históricos brindan la posibilidad de realizar estudios en materiales orgánicos como fibras, elementos de adhesión, tinturas, papel, etc., e inorgánicos como metales, aleaciones, piedras preciosas y demás materiales decorativos añadidos. Por su variedad de composición, es posible emplear diversas técnicas analíticas para resolver aquellas preguntas propias del objeto en una investigación arqueométrica. Uno de los objetos textiles que brinda gran información cultural debido a su representación lingüística empleada por las sociedades portadoras, son las banderas/estandartes/emblemas. Donde varía dependiendo de su uso y/o propósito, los materiales empleados en su elaboración, al igual que su iconografía (estilo, color, emblema, forma). El estudio de estos objetos construidos con un propósito de comunicación no verbal, da la posibilidad de extraer información a través de sus materiales y técnicas de elaboración sobre un rango temporal-espacial, un evento determinado en la historia o incluso a un personaje en específico. Las banderas han sido empleadas desde el siglo XI como objetos representativos de poder, jerarquía, organización social o militar, o como medio de comunicación. El uso de estos objetos se ha extendido a lo largo del mundo posiblemente debido a su fácil interpretación y/o apropiación por distintas sociedades, haciéndolo parte de su cultura. Las banderas como símbolos de control territorial, empleando símbolos que representan a una familia, orden o armada fueron introducidas a el Nuevo Mundo (América) con la llegada de los conquistadores europeos al final del siglo XV. Las banderas/estandartes que representaban el dominio Real sobre territorios dominados, la iglesia católica y las banderas de ejércitos y/o conquistadores fueron las primeras en llegar al nuevo mundo. Una de aquellas banderas que ha soportado el paso del tiempo, teniendo un gran valor cultural tanto para las sociedades americanas como para las ibéricas, es el denominado Estandarte de armas de Francisco Pizarro. Siendo un objeto textil con decoración en hilos metálicos sobre un emblema Real. De acuerdo a fuentes históricas, este objeto fue usado por Francisco Pizarro en 1532 en el proceso de conquista del Perú, quien recibe por parte del Rey Carlos V el poder para que, en su nombre, Pizarro pueda conquistar las tierras del nuevo mundo hoy conocidas como Perú. Luego del dominio de Pizarro sobre el territorio Inca, se cree que Pizarro dejó su estandarte en la cima del templo Inca del sol como símbolo de su control. Siglos más tarde, en las campañas libertarias de América, el General Sucre, militar encargado de la armada independentista en Perú, reporta haber encontrado lo que él considera como el estandarte de Pizarro, enviándolo a Bogotá como muestra de victoria, siendo custodiada desde ese momento por el Museo Nacional de Colombia hasta la actualidad. Debido a discrepancias históricas, el verdadero significado del llamado estandarte de Pizarro ha sido objeto de discusión y debido del pasar del tiempo su estado de conservación se ha deteriorado. Dejando de este modo, un caso de estudio interesante para que por medio de estudios científicos al objeto se pueda dar respuesta a preguntas tanto históricas como de conservación del mismo. De este modo, por medio de una colaboración con el Museo Nacional de Colombia, se obtuvo un juego de 25 muestras del llamado Estandarte de armas de Francisco Pizarro, abarcando los diferentes componentes y áreas del objeto de estudio. Dichas muestras fueron sometidas a estudios analíticos para su caracterización físico-química. Análisis de observación al microscopio, análisis VSEM-EDS, espectroscopia Raman, análisis cromatográficos (HPLC-MS, GC-MS) y datación por radiocarbono catorce fueron realizados. Del mismo modo, por medio de una inspección física al objeto in situ y una profunda investigación en fuentes históricas del mismo, se buscó la información adecuada para resolver sus problemáticas. Los resultados obtenidos permitieron identificar como seda el textil empleado en la elaboración del estandarte, así como el uso de colorantes naturales para teñir las fibras en el emblema: uso de cochinilla y palo de Brasil como fuente del color rojo, plantas a base de luteolin para el color amarillo, plantas a base de indigotina para el color azul y mezcla de colorantes amarillos y azules para el color verde fueron identificadas. Del mismo modo se evidencio el uso de adhesivos animales y el uso de papel de trapos en el proceso de manufactura. El estudio de los hilos metálicos, permitió evidenciar el uso de alambres con núcleos de plata con un fino recubrimiento de oro en su exterior, siendo aplanados y entrelazados con hilos de seda para su uso. Finalmente usando la datación por radiocarbono, fue posible conocer con alta precisión que el estandarte fue elaborado entre los siglos XV-XVI y sufrió procesos de restauración con añadidura de textiles en tiempos modernos. Junto a lo anterior, es posible postular que el estado de degradación de la tela es debido a degradación natural en las fibras de seda, teniendo así que su color se ha desvanecido y sus propiedades mecánicas disminuidas, conllevando a perdida de rigidez y desaparición de la estructura. Del mismo modo se pudo conocer los colores originales del emblema y evidenciar problemas de desprendimiento del papel debido a cristalización del adhesivo. Asimismo, se comprobó que los hilos metálicos presentan corrosión por azufre y desprendimiento de sus cristales. Finalmente, combinando los resultados analíticos y la información de fuentes históricas encontradas del llamado Estandarte de armas de Francisco Pizarro, se puede postular que su elaboración fue realizada en Europa, usando materiales preciosos para obtener un objeto de larga vida con un profundo mensaje para sus observadores. También, los datos obtenidos ayudan a dar soporte la posible idea de que este objeto fue usado por Francisco Pizarro en el proceso de conquista del Perú. Sin embargo, debido a los símbolos presentes en el objeto, fecha y materiales de elaboración, este objeto es claramente único en su tipo, y lo más importante, por su mensaje lingüístico, este no representa a Francisco Pizarro o su armada, al contrario, representa a la Corona de España. Por ende, en vez de denominarse como Estandarte de armas de Francisco Pizarro, este objeto debería nombrarse como el Estandarte Real de la Colonia de Carlos V en el Nuevo Mundo.
Resumo:
In this work we compare Grapholita molesta Busck (Lepidoptera: Tortricidae) populations originated from Brazil, Chile, Spain, Italy and Greece using power spectral density and phylogenetic analysis to detect any similarities between the population macro- and the molecular micro-level. Log-transformed population data were normalized and AR(p) models were developed to generate for each case population time series of equal lengths. The time-frequency/scale properties of the population data were further analyzed using wavelet analysis to detect any population dynamics frequency changes and cluster the populations. Based on the power spectral of each population time series and the hierarchical clustering schemes, populations originated from Southern America (Brazil and Chile) exhibit similar rhythmic properties and are both closer related with populations originated from Greece. Populations from Spain and especially Italy, have higher distance by terms of periodic changes on their population dynamics. Moreover, the members within the same cluster share similar spectral information, therefore they are supposed to participate in the same temporally regulated population process. On the contrary, the phylogenetic approach revealed a less structured pattern that bears indications of panmixia, as the two clusters contain individuals from both Europe and South America. This preliminary outcome will be further assessed by incorporating more individuals and likely employed a second molecular marker.
Resumo:
Antigen design is generally driven by the need to obtain enhanced stability,efficiency and safety in vaccines.Unfortunately,the antigen modification is rarely proceeded in parallel with analytical tools development characterization.The analytical tools set up is required during steps of vaccine manufacturing pipeline,for vaccine production modifications,improvements or regulatory requirements.Despite the relevance of bioconjugate vaccines,robust and consistent analytical tools to evaluate the extent of carrier glycosylation are missing.Bioconjugation is a glycoengineering technology aimed to produce N-glycoprotein in vivo in E.coli cells,based on the PglB-dependent system by C. jejuni,applied for production of several glycoconjugate vaccines.This applicability is due to glycocompetent E. coli ability to produce site-selective glycosylated protein used,after few purification steps, as vaccines able to elicit both humoral and cell-mediate immune-response.Here, S.aureus Hla bioconjugated with CP5 was used to perform rational analytical-driven design of the glycosylation sites for the glycosylation extent quantification by Mass Spectrometry.The aim of the study was to develop a MS-based approach to quantify the glycosylation extent for in-process monitoring of bioconjugate production and for final product characterization.The three designed consensus sequences differ for a single amino-acid residue and fulfill the prerequisites for engineered bioconjugate more appropriate from an analytical perspective.We aimed to achieve an optimal MS detectability of the peptide carrying the consensus sequences,complying with the well-characterized requirements for N-glycosylation by PglB.Hla carrier isoforms,bearing these consensus sequences allowed a recovery of about 20 ng/μg of periplasmic protein glycosylated at 40%.The SRM-MS here developed was successfully applied to evaluate the differential site occupancy when carrier protein present two glycosites.The glycosylation extent in each glycosite was determined and the difference in the isoforms were influenced either by the overall source of protein produced and by the position of glycosite insertion.The analytical driven design of the bioconjugated antigen and the development of accurate,precise and robust analytical method allowed to finely characterize the vaccine.
Resumo:
In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.
Resumo:
The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.
Resumo:
Advanced analytical methodologies were developed to characterize new potential active MTDLs on isolated targets involved in the first stages of Alzheimer’s disease (AD). In addition, the methods investigated drug-protein bindings and evaluated protein-protein interactions involved in the neurodegeneration. A high-throughput luminescent assay allowed the study of the first in class GSK-3β/ HDAC dual inhibitors towards the enzyme GSK-3β. The method was able to identify an innovative disease-modifying agent with an activity in the micromolar range both on GSK-3β, HDAC1 and HDAC6. Then, the same assay reliably and quickly selected true positive hit compounds among natural Amaryllidaceae alkaloids tested against GSK-3β. Hence, given the central role of the amyloid pathway in the multifactorial nature of AD, a multi-methodological approach based on mass spectrometry (MS), circular dichroism spectroscopy (CD) and ThT assay was applied to characterize the potential interaction of CO releasing molecules (CORMs) with Aβ1-42 peptide. The comprehensive method provided reliable information on the different steps of the fibrillation process and regarding CORMs mechanism of action. Therefore, the optimal CORM-3/Aβ1−42 ratio in terms of inhibitory effect was identified by mass spectrometry. CD analysis confirmed the stabilizing effect of CORM-3 on the Aβ1−42 peptide soluble form and the ThT Fluorescent Analysis ensured that the entire fibrillation process was delayed. Then the amyloid aggregation process was studied in view of a possible correlation with AD lipid brain alterations. Therefore, SH-SY5Y cells were treated with increasing concentration of Aß1-42 at different times and the samples were analysed by a RP-UHPLC system coupled with a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode. Each lipid class profiling in SH-SY5Y cells treated with Aß1-42 was compared to the one obtained from the untreated. The approach underlined some peculiar lipid alterations, suitable as biomarkers, that might be correlated to Aß1-42 different aggregation species.
Resumo:
Hydrogen sulfide (H2S) is a widely recognized gasotransmitter, with key roles in physiological and pathological processes. The accurate quantification of H2S and reactive sulfur species (RSS) may hold important implications for the diagnosis and prognosis of various diseases. However, H2S species quantification in biological matrices is still a challenge. Among the sulfide detection methods, monobromobimane (MBB) derivatization coupled with reversed phase high-performance liquid chromatography (RP-HPLC) is one of the most reported. However, it is characterized by a complex preparation and time-consuming process, which may alter the actual H2S level. Moreover, quantitative validation has still not been described based on a survey of previously published works. In this study, we developed and validated an improved analytical protocol for the MBB RP-HPLC method. Main parameters like MBB concentration, temperature, reaction time, and sample handling were optimized, and the calibration method was further validated using leave-one-out cross-validation (CV) and tested in a clinical setting. The method shows high sensitivity and allows the quantification of H2S species, with a limit of detection (LOD) of 0.5 µM and a limit of quantification (LOQ) of 0.9 µM. Additionally, this model was successfully applied in measurements of H2S levels in the serum of patients subjected to inhalation with vapors rich in H2S. In addition, a properly procedure was established for H2S release with the modified MBB HPLC-FLD method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer Silk-Fibroin scaffolds with the combination of different H2S donor’s concentration with respect to the weight of PLGA nanofiber. In the end, some efforts were made on sulfide measurements by using size exclusion chromatography fluorescence/ultraviolet detection and inductively coupled plasma-mass spectrometry (SEC-FLD/UV-ICP/MS). It’s intended as a preliminary study in order to define the feasibility of a separation-detection-quantification platform to analyze biological samples and quantify sulfur species.
Resumo:
Cleaning is one of the most important and delicate procedures that are part of the restoration process. When developing new systems, it is fundamental to consider its selectivity towards the layer to-be-removed, non-invasiveness towards the one to-be-preserved, its sustainability and non-toxicity. Besides assessing its efficacy, it is important to understand its mechanism by analytical protocols that strike a balance between cost, practicality, and reliable interpretation of results. In this thesis, the development of cleaning systems based on the coupling of electrospun fabrics (ES) and greener organic solvents is proposed. Electrospinning is a versatile technique that allows the production of micro/nanostructured non-woven mats, which have already been used as absorbents in various scientific fields, but to date, not in the restoration field. The systems produced proved to be effective for the removal of dammar varnish from paintings, where the ES not only act as solvent-binding agents but also as adsorbents towards the partially solubilised varnish due to capillary rise, thus enabling a one-step procedure. They have also been successfully applied for the removal of spray varnish from marble substrates and wall paintings. Due to the materials' complexity, the procedure had to be adapted case-by-case and mechanical action was still necessary. According to the spinning solution, three types of ES mats have been produced: polyamide 6,6, pullulan and pullulan with melanin nanoparticles. The latter, under irradiation, allows for a localised temperature increase accelerating and facilitating the removal of less soluble layers (e.g. reticulated alkyd-based paints). All the systems produced, and the mock-ups used were extensively characterised using multi-analytical protocols. Finally, a monitoring protocol and image treatment based on photoluminescence macro-imaging is proposed. This set-up allowed the study of the removal mechanism of dammar varnish and semi-quantify its residues. These initial results form the basis for optimising the acquisition set-up and data processing.
Resumo:
Extra cellular vesicles are membrane bound and lipid based nano particles having the size range of 30 to 1000 nm released by a plethora of cells. Their prime function is cellular communication but in the recent studies, the potential of these vesicles to maintain physiological and pathological processes as well as their nano-sized constituents opened doors to its applications in therapeutics, and diagnostics of variety of diseases such as cancer. Their main constituents include lipids, proteins, and RNAs. They are categorized into subtypes such as exosomes, micro-vesicles and apoptotic bodies In recent studies, extracellular vesicles that are derived from plants are gaining high regard due to their variety of advantages such as safety, non-toxicity, and high availability which promotes large scale production. EVs are isolated from mammalian and plant cells using multitude of techniques such as Ultracentrifugation, SEC, Precipitation and so on. Due to the variety in the sources as well as shortcomings arising from the isolation method, a scalable and inexpensive EV isolation method is yet to be designed. This study focusses on isolation of EVs from citrus lemon juice through diafiltration. Lemon is a promising source due to its biological properties to act as antioxidant, anticancer, and anti-inflammatory agents. Lemon derived vesicles was proven to have several proteins analogous to mammalian vesicles. A diafiltration could be carried out for successful removal of impurities and it is a scalable, continuous technique with potentially lower process times. The concentration of purified product and impurities are analysed using Size Exclusion Chromatography in analytical mode. It is also considered imperative to compare the results from diafiltration with gold standard UC. BCA is proposed to evaluate total protein content and DLS for size measurements. Finally, the ideal mode of storage of EVs to protect its internals and its structure is analysed with storage tests.
Resumo:
Systemic lupus erythematosus is an autoimmune disease that causes many psychological repercussions that have been studied through qualitative research. These are considered relevant, since they reveal the amplitude experienced by patients. Given this importance, this study aims to map the qualitative production in this theme, derived from studies of experiences of adult patients of both genders and that had used as a tool a semi-structured interview and/or field observations, and had made use of a sampling by a saturation criterion to determine the number of participants in each study. The survey was conducted in Pubmed, Lilacs, Psycinfo e Cochrane databases, searching productions in English and Portuguese idioms published between January 2005 and June 2012. The 19 revised papers that have dealt with patients in the acute phase of the disease showed themes that were categorized into eight topics that contemplated the experienced process at various stages, from the onset of the disease, extending through the knowledge of the diagnosis and the understanding of the manifestations of the disease, drug treatment and general care, evolution and prognosis. The collected papers also point to the difficulty of understanding, of the patients, on what consists the remission phase, revealing also that this is a clinical stage underexplored by psychological studies.
Resumo:
Dulce de leche samples available in the Brazilian market were submitted to sensory profiling by quantitative descriptive analysis and acceptance test, as well sensory evaluation using the just-about-right scale and purchase intent. External preference mapping and the ideal sensory characteristics of dulce de leche were determined. The results were also evaluated by principal component analysis, hierarchical cluster analysis, partial least squares regression, artificial neural networks, and logistic regression. Overall, significant product acceptance was related to intermediate scores of the sensory attributes in the descriptive test, and this trend was observed even after consumer segmentation. The results obtained by sensometric techniques showed that optimizing an ideal dulce de leche from the sensory standpoint is a multidimensional process, with necessary adjustments on the appearance, aroma, taste, and texture attributes of the product for better consumer acceptance and purchase. The optimum dulce de leche was characterized by high scores for the attributes sweet taste, caramel taste, brightness, color, and caramel aroma in accordance with the preference mapping findings. In industrial terms, this means changing the parameters used in the thermal treatment and quantitative changes in the ingredients used in formulations.
Resumo:
20
Resumo:
The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.