924 resultados para Hibernating Ground-squirrels
Resumo:
Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.
The effect of a twin tunnel on the propagation of ground-borne vibration from an underground railway
Resumo:
Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought after in modern urban centres. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this system. One such commonly made assumption is to ignore the effects of neighbouring tunnels, despite the fact that many underground railway lines consist of twin-bored tunnels, one for the outbound direction and one for the inbound direction. This paper presents a unique model for two tunnels embedded in a homogeneous, elastic fullspace. Each of these tunnels is subject to both known, dynamic train forces and dynamic cavity forces. The net forces acting on the tunnels are written as the sum of those tractions acting on the invert of a single tunnel, and those tractions that represent the motion induced by the neighbouring tunnel. By apportioning the tractions in this way, the vibration response of a two-tunnel system is written as a linear combination of displacement fields produced by a single-tunnel system. Using Fourier decomposition, forces are partitioned into symmetric and antisymmetric modenumber components to minimise computation times. The significance of the interactions between two tunnels is quantified by calculating the insertion gains, in both the vertical and horizontal directions, that result from the existence of a second tunnel. The insertion-gain results are shown to be localised and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20 dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration prediction model that includes only one of the two tunnels. This novel two-tunnel solution represents a significant contribution to the existing body of research into vibration from underground railways, as it shows that the second tunnel has a significant influence on the accuracy of vibration predictions for underground railways. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Based on the pelage characteristics and results of multivariate and univariate analyses, a new subspecies is described in this study, and a taxonomic revision of Tamiops swinhoei from China is presented. In total, 123 specimens of Tamiops swinhoei were in
Resumo:
Predation on vertebrates is infrequent in gibbons. In a 14-month field study of the central Yunnan black crested gibbon (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China, we observed gibbons attacking, killing and eating giant flying squirre
Resumo:
A sample of 114 specimens of Dremomys pernyi was investigated, 73 of which had intact skulls and were subjected to multivariate, coefficient of difference (C. D.), and cluster analyses. Results indicate that 4 subspecies (groups) of Dremomys pernyi inhabi
Resumo:
对云南轿子雪山自然保护区地表甲虫物的种组成及生物多样性季节变化进行了连续跟踪调查.调查结果如下:(1)通过对4种典型微环境样地(草地、灌丛、林地以及农田生态系统)连续3次跟踪连续调查,共获得标本2451头,分别隶属于24科.其中步甲科(Carabidae)为优势类群,占总数的62.10%;隐翅虫科(Staphylinidae)其次,占12.77%.可能由于海拔、气温等因素影响,该地区昆虫活动高峰期较短.(2)通过对4种典型微生态环境中地表甲虫的生物多样性的比较,表明不同生境内甲虫的多样性指数存在动态变化,在不同生境片区内甲虫存在迁移活动,甲虫多在灌丛中越冬,并随季节及食物源迁移.
Resumo:
Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought in modern urban centers. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this environment. One such commonly-made assumption is to model the railway as a single tunnel, despite many underground railway lines consisting of twin-bored tunnels. A unique model for two tunnels embedded in a homogeneous, elastic full space is developed. The vibration response of this two-tunnel system is calculated using the superposition of two displacement fields: one resulting from the forces acting on the invert of a single tunnel, and the other resulting from the interaction between the tunnels. By partitioning of the stresses into symmetric and anti-symmetric mode number components using Fourier decomposition, these two displacement fields can by calculated with minimal computational requirements. The significance of the interactions between twin-tunnels is quantified by calculating the insertion gains that result from the existence of a second tunnel. The insertion-gain results are shown to be localized and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration-prediction model that includes only one of the two tunnels. © 2012 Springer.
Resumo:
This paper provides a case study on the deepest excavation carried out so far in the construction of the metro network in Shanghai, which typically features soft ground. The excavation is 38 m deep with retaining walls 65 m deep braced by 9 levels of concrete props. To obtain a quick and rough prediction, two centrifuge model tests were conducted, in which one is for the 'standard' section with green field surrounding and the other with an adjacent piled building. The tests were carried out in a run-stop-excavation-run style, in which excavation was conducted manually. By analyzing the lateral wall displacement, ground deformation, bending moment and earth pressure, the test results are shown to be reasonably convincing and the design and construction were validated. Such industry orientated centrifuge modeling was shown to be useful in understanding the performance of geotechnical processes, especially when engineers lack relevant field experience. © 2010 Taylor & Francis Group, London.
Resumo:
Long-term settlement of tunnels has caused concerns about its influence on tunnel safety and serviceability. Aiming to investigate the long-term behaviour of tunnels against the background of Shanghai metro line, two cases of centrifuge modelling were conducted, with efforts to expose the mechanism affecting the consolidation of the ground. Evenly layered ground and transitional ground strata were set for each case separately and the settlement, lining load and pore water pressure were checked against elapsed time up to 20 years. The results verified some previous findings concerning the settlement and lining load development trend, however, it was also shown that the transitional ground made the tunnel response more complicated. The research is expected to provide some basis for further research on other affecting factors, such as lining permeability. © 2010 Taylor & Francis Group, London.
Resumo:
One feature of earthquake loading in regions containing sloping ground is a marked increase in accelerations at the crests of slopes. Many field cases exist where such increased accelerations were measured. The observed increase in the amount and severity of observed building damage near the edge of cliff-type topographies has been attributed to the topographic amplification. To counter this, it has been shown that anchoring the soil mass responsible for this to the rest of the stable soil mass can reduce the amount of topographic amplification. In this study, dynamic centrifuge modelling will be used to identify the region affected by topographic amplification in a model slope. The soil accelerations recorded will be compared to those measured in a comparable model treated by anchors. In addition, the tension measured in the anchors will be examined in order to better understand how the anchors are transferring the loads and mitigating these amplifications. © 2010 Taylor & Francis Group, London.
Resumo:
To maximize the utility of high land cost in urban development, underground space is commonly exploited, both to reduce the load acting on the ground and to increase the space available. The execution of underground constructions requires the use of appropriate retaining wall and bracing systems. Inadequate support systems have always been a major concern, as any excessive ground movement induced during excavation could cause damage to neighboring structures, resulting in delays, disputes and cost overruns. Experimental findings on the effect of wall stiffness, depth of the stiff stratum away from the wall toe and wall toe fixity condition are presented and discussed. © 2012 Taylor & Francis Group.
Resumo:
Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.