906 resultados para Helicobacter pylori genotypes
Resumo:
Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.
Resumo:
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2`-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 mu M ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Desenvolvimento de sistemas magnéticos com potencialidades terapêuticas para vetorização de fármacos
Resumo:
Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.
Resumo:
The genome of the bacterium Xylella fastidiosa contains four ORFs (XF2721, XF2725, XF2739 and XF0295) related to the restriction modification type I system, ordinarily named R-M. This system belongs to the DNA immigration control region (ICR). Each CIRF is related to different operon structures, which are homologues among themselves and with subunit Hsd R from the endonuclease coding genes. In addition, these ORFs are highly homologous to genes in Pseudomonas aeruginosa, Methylococcus capsulatus str. Bath, Legionella pneumophila, Helicobacter pylori, Xanthomonas oryzae pv. Oryzae and Silicibacter pomeroyi, as well as to genes from X. fastidiosa strains that infect grapevine, almond and oleander plants. This study was carried out on R-M ORFs from forty-three X. fastidiosa strains isolated from citrus, coffee, grapevine, periwinkle, almond and plum trees, in order to assess the genetic diversity of these loci through PCR-RFLP. PCR-RFLP analysis of the four ORFs related to the R-M system from these strains enabled the detection of haplotypes for these loci. When the haplotypes were defined, wide genetic diversity and a large range of similar strains originating from different hosts were observed. This analysis also provided information indicating differences in population genetic structures, which led to detection of different levels of gene transfer among the groups of strains. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
This study investigated the relationship among the histological diagnosis of esophagitis and gastritis in children and adolescents with gastroesophageal reflux disease (GERD) and/or dyspepsia. Records of 366 patients submitted to endoscopic biopsies were reviewed. Two groups were analyzed: G1 n=258 with esophageal and gastric biopsies, G2 n=108 with gastric biopsies only. For total subjects median age (range) was 8.5y (2mo-19.9y). Helicobacter pylori infection was detected in 30.6 %, median age 12.5y for H pylori-infected and 5.5y for uninfected children. Histological esophagitis was found in 216/258 (83.7 %) and gastritis in 95/258 (36.8 %) of G1. Both biopsies were normal for 13.6 % cases. Normal gastric biopsies were associated with esophagitis in 128/ 163 (78.5 %) of G1, but gastritis was associated with normal esophageal biopsies in only 7/95 (7.4 %) (0<.001). Histological gastritis was found in 80/108 (74.1 %) of G2 patients. Therefore, for symptomatic children both biopsies are indicated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: To evaluate the association between polymorphisms XRCC1 Arg194Trp and Arg399Gln and XRCC3 Thr241Met and the risk for chronic gastritis and gastric cancer, in a Southeastern Brazilian population. Methods: Genotyping by PCR-RFLP was carried out on 202 patients with chronic gastritis (CG) and 160 patients with gastric cancer (GC), matched to 202 (C1) and 150 (C2) controls, respectively. Results: No differences were observed among the studied groups with regard to the genotype distribution of XRCC1 codons 194 and 399 and of XRCC3 codon 241. However, the combined analyses of the three variant alleles (194Trp, 399Gln and 241Met) showed an increased risk for chronic gastritis when compared to the GC group. Moreover, an interaction between the polymorphic alleles and demographic and environmental factors was observed in the CG and GC groups. XRCC1 194Trp was associated with smoking in the CG group, while the variant alleles XRCC1 399Gln and XRCC3 241Met were related with gender, smoking, drinking and H pylori infection in the CG and GC groups. Conclusion: Our results showed no evidence of a rela-tionship between the polymorphisms XRCC1 Arg194Trp and Arg399Gln and XRCC3 Thr241Met and the risk of chronic gastritis and gastric cancer in the Brazilian population, but the combined effect of these variants may interact to increase the risk for chronic gastritis, considered a premalignant lesion. Our data also indicate a gene-environment interaction in the susceptibility to chronic gastritis and gastric cancer. © 2005 The WJG Press and Elsevier Inc. All rights reserved.