935 resultados para Habitat Structure
Resumo:
The GERMON project had several aims i) to understand the populations’ structure between albacore tuna southwest of the Indian Ocean and southeast Atlantic, ii) to determine the origin of juveniles observed in South Africa iii) to improve the understanding of the biology field (Size/Size and Size/Weight; reproduction and feeding area; trophic linkages) and iv) to initiate work on chemical analyzes and adaptation of the albacore species to its environment. These aims have been held and the results allow a better understanding of the management albacore. A general summary of results is presented in Part 9.
Resumo:
O efeito das grandes barragens na comunidade piscícola vem sendo documentado por numerosos estudos, enquanto o número de trabalhos que incidem sobre o efeito dos obstáculos de pequena dimensão é bastante mais reduzido. A comunidade piscícola foi amostrada e as variáveis ambientais foram caracterizadas em 28 locais divididos por dois cursos de água da Península Ibérica, 14 dos quais localizados imediatamente a montante, jusante e entre cinco pequenos obstáculos na Ribeira de Muge e 14 na Ribeira de Erra, considerada a linha de água de referência. Através de análise estatística multivariada foi possível verificar que variáveis de habitat como a velocidade de corrente e a profundidade, e não as variáveis físico-químicas, foram as principais responsáveis pela discriminação dos vários grupos de locais nas duas ribeiras. A ribeira de referência exibiu um gradiente longitudinal de velocidade de corrente que, contudo, não era suficientemente forte para causar alterações significativas na composição e estrutura dos agrupamentos piscícolas. Através da sucessiva e drástica repetição deste gradiente junto a cada estrutura, a ribeira com obstáculos apresentou diferenças na fauna piscícola entre os três tipos de locais. Os troços lênticos a montante apresentavam uma densidade mais elevada de espécies limnofilicas, omnívoras e exóticas, como o góbio (Gobio lozanoi), que estão bem adaptadas a este tipo de habitat. Os locais de amostragem situados a jusante e entre os obstáculos caracterizavam-se pela dominância de taxa reófilos e invetivo-os (i.e. barbo, Luciobarbus bocagei). As métricas relacionadas com a riqueza específica não apresentaram diferenças entre os três tipos de locais, ao contrário da diversidade que foi mais elevada nos pontos situados entre os obstáculos, afastados da sua influência directa, onde a diversidade de habitats também é mais elevada. Contrariamente aos locais a montante, os troços a jusante e entre os obstáculos apresentaram similaridades, em muitas das características estudadas, com a ribeira de referência, sugerindo que este tipo de estruturas provoca uma alteração mais significativa na comunidade piscícola a montante. Este estudo sugere que os efeitos dos pequenos obstáculos no habitat e na ictiofauna são, em parte, semelhantes aos descritos para as grandes barragens, fornecendo considerações importantes para os esforços de conservação dos ecossistemas ribeirinhos. ABSTRACT; Many studies have assessed the effects of large dams on fishes but few have examined the effects of small obstacles. Fishes were sampled and environmental variables were characterized at 28 sites in two lberian streams, 14 located immediately downstream, upstream and between five small obstacles at River Muge and 14 at River Erra, considered as the reference stream. Multivariate analysis indicated that habitat variables like current velocity and depth, but not physicochemistry, were the main responsible for site groups' discrimination in both streams. The reference stream exhibited a longitudinal gradient of current velocity that, however, wasn't strong enough to cause significant changes in the fish assemblage's composition and structure. By successive and drastically repeating this gradient near each structure, the obstac1es stream presented differences in fish fauna between the three site types. Lentic upstream sites presented higher density of limnophilic, omnivorous and exotic species, like gudgeon Gobio lozanoi, who are well adapted to this type of habitat. Downstream and between obstacles sites were characterized by the dominance of rheophilic and invertivorous taxa, especially barbel Luciobarbus bocagei. Richness metrics did not differ among site types, but diversity was higher in sites located between the obstacles away from its direct influence, where the habitat diversity was higher. Contrarily to upstream sites, downstream and between obstacles sites were similar in many of the studied features to the reference stream, implying that this type of structures cause a higher modification in the upstream fish community. This study suggests that the effects of small obstacles on habitat and fishes are similar, in some extent, to those reported for larger dams, providing important considerations for riverine ecosystem conservation efforts.
Resumo:
Bottlenose dolphins (Tursiops truncatus) are large-bodied predators that are locally abundant in the coastal Everglades. Because of their potential to exert strong top-down effects on their communities, it is important to understand how spatiotemporal variation in biotic and abiotic factors affects the abundance and behavior of dolphins. This study combined two years of transect surveys with photographic identification methods to assess spatiotemporal variation in the abundance and group sizes of bottlenose dolphins across four large regions of the coastal Everglades including the Shark and Harney Rivers, Whitewater Bay, and coastal oceans of the Gulf of Mexico and Florida Bay. Dolphin abundance was similar across wet and dry seasons, except in river habitats where abundances were higher during the dry season. Group sizes were largest in Florida Bay and open water. Dolphins may be relatively resilient to abiotic changes in the coastal Everglades, with the possible exception of river habitats.
Resumo:
Shallow seagrass ecosystems frequently experience physical disturbance from vessel groundings. Specific restoration methods that modify physical, chemical, and biological aspects of disturbances are used to accelerate recovery. This study evaluated loss and recovery of ecosystem structure in disturbed seagrass meadows through plant and soil properties used as proxies for primary and secondary production, habitat quality, benthic metabolism, remineralization, and nutrient storage and exchange. The efficacy of common seagrass restoration techniques in accelerating recovery was also assessed. Beyond removal of macrophyte biomass, disturbance to seagrass sediments resulted in loss of organic matter and stored nutrients, and altered microbial and infaunal communities. Evidence of the effectiveness of restoration actions was variable. Fill placement prevented additional erosion, but the resulting sediment matrix had different physical properties, low organic matter content and nutrient pools, reduced benthic metabolism, and less primary and secondary production relative to the undisturbed ecosystem. Fertilization was effective in increasing nitrogen and phosphorus availability in the sediments, but concurrent enhancement of seagrass production was not detected. Seagrass herbivores removed substantial seagrass biomass via direct grazing, suggesting that leaf loss to seagrass herbivores is a spatially variable but critically important determinant of seagrass transplanting success. Convergence of plant and sediment response variables with levels in undisturbed seagrass meadows was not detected via natural recovery of disturbed sites, or through filling and fertilizing restoration sites. However, several indicators of ecosystem development related to primary production and nutrient accumulation suggest that early stages of ecosystem development have begun at these sites. This research suggests that vessel grounding disturbances in seagrass ecosystems create more complex and persistent resource losses than previously understood by resource managers. While the mechanics of implementing common seagrass restoration actions have been successfully developed by the restoration community, expectations of consistent or rapid recovery trajectories following restoration remain elusive.
Resumo:
Rare plant conservation efforts must utilize current genetic methods to ensure the evolutionary potential of populations is preserved. One such effort involves the Key Tree Cactus, Pilosocereus robinii, which is an endangered columnar cactus native to the Florida Keys. The populations have precipitously declined over the past decade because of habitat loss and increasing soil salinity from rising sea levels and storm surge. Next-generation DNA sequencing was used to assess the genetic structure of the populations. Twenty individuals representative of both wild and extirpated cacti were chosen for Restriction Site Associated DNA (RAD) analysis. Samples processed using the HindIII and NotIII restriction enzymes produced 82,382,440 high quality reads used for genetic mapping, from which 5,265 Single Nucleotide Polymorphisms (SNPs) were discovered. The analysis revealed that the Keys’ populations are closely related with little population differentiation. In addition, the populations display evidence of inbreeding and low genetic diversity.
Resumo:
Fish assemblages in seagrass and unvegetated habitats located in shallow intertidal creeks within the saltmarsh area of the Ria Formosa coastal lagoon were sampled with a Riley push net at 3 sites on a monthly basis over a 1 yr period. The objective was to test if both habitats support similar fish assemblages in terms of abundance, diversity, assemblage structure, and size distribution, and to investigate how site and season affect the assemblages. Fish assemblages associated with these habitats were significantly different in terms of diversity, abundance, and assemblage structure. Seagrass supported a larger number of species and greater diversity, while unvegetated habitat supported greater fish numbers but only of a few species. The habitats were dominated by different groups of resident species that were responsible for major differences in fish assemblage structure between habitats. Pomatoschistus microps and young-of-the-year (YOY) Atherina presbyter dominated the unvegetated habitat, while seagrass was dominated by a diverse group of species, in particular syngnathids and small labrids, revealing different habitat preferences. Site and season were determinant factors conditioning the role of habitat in structuring fish assemblages. Distance between habitats, site elevation, and the amount of marsh drained affected fish assemblages in both habitats. Seasonal fluctuations in the presence and abundance of YOY from marine migrant and resident species were responsible for comparable changes in fish assemblage structure in both habitats. Both habitats provide a distinctive nursery area for different species, while common species reveal ontogenic distributional changes between habitats, where smaller fish appear first in unvegetated creeks.
Resumo:
We studied the ichthyofauna of the Castro Marim salt marsh based on monthly sampling surveys at five sites between September 2000 and August 2001. Sampling took place at night during rising neap tides using a 40-m long beach seine. We sampled a total of 7955 fish specimens (37 995.7 g), comprising 34 species and 17 families. The occurrence of most species was occasional, with Pomatoschistus microps (51.9%) and Atherina spp. (10.3%) being the most abundant species, accounting for 62.2% of the total fish captured. Biomass was dominated by the marine species Liza ramado (15.9%), Mullus surmuletus (13.5%), and Liza aurata (13.4%). Temperature and salinity showed a seasonal pattern, with minimums during the winter months and maximums during the summer months. In contrast, river flow peaked in winter and was lowest during summer. This pattern in river flow appears to be correlated with variations in the fish assemblages, which present two distinct compositions during the two periods. A few species characterise the winter fish assemblage, with dominance by residents and the presence of freshwater species, while the summer assemblage is characterised by the presence of many marine visitors that use the salt marsh in their first months/years of life. Temporal variations in total abundance and biomass reflect fluctuations in the dominant species. Resident species presented the highest abundance values, while marine adventitious species and marine species that use the salt marsh as a nursery ground contributed most to community species richness. Castro Marim salt marsh constitutes an important ecosystem for fishes, providing habitat for many species, especially juveniles, which find conditions within the salt marsh suitable for their development. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Juniperus navicularis Gand. is a dioecious endemic conifer that constitutes the understory of seaside pine forests in Portugal, areas currently threatened by increasing urban expansion. The aim of this study is to assess the conservation status of previously known populations of this species located on its core area of distribution. The study was performed in south-west coast of Portugal. Three populations varying in size and pine density were analyzed. Number of individuals, population density, spatial distribution and individual characteristics of junipers were estimated. Female cone, seed characteristics and seed viability were also evaluated. Results suggest that J. navicularis populations are vulnerable because seminal recruitment is scarce, what may lead to a reduction of genetic variability due solely to vegetative propagation. This vulnerability seems to be strongly determined by climatic constraints toward increasing aridity. Ratio between male and female shrubs did not differ from 1:1 in any population. Deviations from 1:1 between mature and non-mature plants were found in all populations, denoting population ageing. Very low seed viability was observed. A major part of described Juniperus navicularis populations have disappeared through direct habitat loss to urban development, loss of fitness in drier and warmer locations and low seed viability. This study is the first to address J. navicularis conservation, and represents a valuable first step toward this species preservation.
Resumo:
Context Seed dispersal is recognized as having profound effects on the distribution, dynamics and structure of plant populations and communities. However, knowledge of how landscape structure shapes carnivore-mediated seed dispersal patterns is still scarce, thereby limiting our understanding of large-scale plant population processes. Objectives We aim to determine how the amount and spatial configuration of forest cover impacted the relative abundance of carnivorous mammals, and how these effects cascaded through the seed dispersal kernels they generated. Methods Camera traps activated by animal movement were used for carnivore sampling. Colour-coded seed mimics embedded in common figs were used to know the exact origin of the dispersed seed mimics later found in carnivore scats. We applied this procedure in two sites differing in landscape structure. Results We did not find between-site differences in the relative abundance of the principal carnivore species contributing to seed dispersal patterns, Martes foina. Mean dispersal distance and the probability of long dispersal events were higher in the site with spatially continuous and abundant forest cover, compared to the site with spatially aggregated and scarcer forest cover. Seed deposition closely matched the spatial patterning of forest cover in both study sites, suggesting behaviour-based mechanisms underpinning seed dispersal patterns generated by individual frugivore species. Conclusions Our results provide the first empirical evidence of the impact of landscape structure on carnivore-mediated seed dispersal kernels. They also indicate that seed dispersal kernels generated strongly depend on the effect that landscape structure exerts on carnivore populations, particularly on habitat-use preferences.
Resumo:
According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e.,many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from withinpatches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.
Resumo:
The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.