976 resultados para HR- CS GF AAS
Resumo:
ḥibberô ... Ṣevî Hîrš Ben-... Aharôn Šemû'ēl Qaydanover
Resumo:
ḥibberô ... Ṣevî Hîrš Ben-... Aharôn Šemû'ēl Qaydanover
Resumo:
ḥibbērô ... Ṣevî Hîrš Ben-... Aharôn Šemû'ēl Qaydanover
Resumo:
ḥibbērô ... Ṣevî Hîrš Ben-... Aharôn Šemû'ēl Qaydanover
Resumo:
Context. Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars. Aims. The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known. Methods. We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the TURBOSPECTRUM spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the (COBOLD)-B-5 model atmosphere code to compute the 3D abundance corrections, notably for Li and O. Results. We find a metallicity of [Fe/H] similar to -3.6 for both stars, using 1D models with 3D corrections of similar to -0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] similar to 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [alpha/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] less than or similar to 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small. Conclusions. The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A( Li) at the lowest metallicities.
Resumo:
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H alpha, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman & O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10(-4) M(circle dot) is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Resumo:
We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si lambda lambda 4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of nu(rot) similar or equal to 150 +/- 20 km s(-1) is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at similar or equal to 0.88 +/- 0.2 of its critical velocity for breakup (nu(crit)). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the ""LBV minimum instability strip""). We suggest this region corresponds to where nu(crit) is reached. To the left of this strip, a forbidden zone with nu(rot)/nu(crit) > 1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low nu(rot), we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.
Resumo:
We present a new set of oscillator strengths for 142 Fe II lines in the wavelength range 4000-8000 angstrom. Our gf-values are both accurate and precise, because each multiplet was globally normalized using laboratory data ( accuracy), while the relative gf-values of individual lines within a given multiplet were obtained from theoretical calculations ( precision). Our line list was tested with the Sun and high-resolution (R approximate to 10(5)), high-S/N (approximate to 700-900) Keck+HIRES spectra of the metal-poor stars HD 148816 and HD 140283, for which line-to-line scatter (sigma) in the iron abundances from Fe II lines as low as 0.03, 0.04, and 0.05 dex are found, respectively. For these three stars the standard error in the mean iron abundance from Fe II lines is negligible (sigma(mean) <= 0.01 dex). The mean solar iron abundance obtained using our gf-values and different model atmospheres is A(Fe) = 7.45(sigma = 0.02).
Resumo:
The question raised by researchers in the field of mathematical biology regarding the existence of error-correcting codes in the structure of the DNA sequences is answered positively. It is shown, for the first time, that DNA sequences such as proteins, targeting sequences and internal sequences are identified as codewords of BCH codes over Galois fields.
Resumo:
Background and Purpose-Few community-based studies have examined the long-term risk of recurrent stroke after an acute first-ever stroke. This study aimed to determine the absolute and relative risks of a first recurrent stroke over the first 5 years after a first-ever stroke and the predictors of such recurrence in a population-based series of people with first-ever stroke in Perth, Western Australia. Methods-Between February 1989 and August 1990, all people with a suspected acute stroke or transient ischemic attack of the brain who were resident in a geographically defined region of Perth, Western Australia, with a population of 138 708 people, were registered prospectively and assessed according to standardized diagnostic criteria. Patients were followed up prospectively at 4 months, 12 months, and 5 years after the index event. Results-Three hundred seventy patients with a first-ever stroke were registered, of whom 351 survived >2 days. Data were available for 98% of the cohort at 5 years, by which time 199 patients (58%) had died and 52 (15%) had experienced a recurrent stroke, 12 (23%) of which were fatal within 28 days. The 5-year cumulative risk of first recurrent stroke was 22.5% (95% confidence limits [CL], 16.8%, 28.1%). The risk of recurrent stroke was greatest in the first 6 months after stroke, at 8.8% (95% CL, 5.4%, 12.1%). After adjustment for age and sex, the prognostic factors for recurrent stroke were advanced, but not extreme, age (75 to 84 years) (hazard ratio [HR], 2.6; 95% CL, 1.1, 6.2), hemorrhagic index stroke (HR, 2.1; 95% CL, 0.98, 4.4), and diabetes mellitus (HR, 2.1; 95% CL, 0.95, 4.4). Conclusions-Approximately 1 in 6 survivors (15%) of a first-ever stroke experience a recurrent stroke over the next 5 years, of which 25% are fatal within 28 days. The pathological subtype of the recurrent stroke is the same as that of the index stroke in 88% of cases. The predictors of first recurrent stroke in this study were advanced age, hemorrhagic index stroke, and diabetes mellitus, but numbers of recurrent events were modest. Because the risk of recurrent stroke is highest (8.8%) in the first 6 months after stroke, strategies for secondary prevention should be initiated as soon as possible after the index event.
Resumo:
Background and Purpose-Few community-based studies have examined the long-term survival and prognostic factors for death within 5 years after an acute first-ever stroke. This study aimed to determine the absolute and relative survival and the independent baseline prognostic Factors for death over the next 5 years among all individuals and among 30-day survivors after a first-ever stroke in a population of Perth, Western Australia. Methods-Between February 1989 and August 1990, all individuals with a suspected acute stroke or transient ischemic attack of the brain who were resident in a geographically defined region of Perth, Western Australia, with a population of 138 708 people, were registered prospectively and assessed according to standardized diagnostic criteria. Patients were followed up prospectively at 4 months, 12 months, and 5 years after the index event. Results-Three hundred seventy patients with first-ever stroke were registered, and 362 (98%) were followed up at 5 years, by which time 210 (58%) had died. In the first year after stroke the risk of death was 36.5% (95% CI, 31.5% to 41.4%), which was 10-fold (95% CI, 8.3% to 11.7%) higher than that expected among the general population of the same age and sex. The most common cause of death was the index stroke (64%). Between 1 and 5 years after stroke, the annual risk of death was approximately 10% per year, which was approximately 2-fold greater than expected, and the most common cause of death was cardiovascular disease (41%). The independent baseline factors among 30-day survivors that predicted death over 5 years were intermittent clandication (hazard ratio [WR], 1.9; 95% CI, 1.2 to 2.9), urinary incontinence (HR, 2.0; 95% CI, 1.3 to 3.0), previous transient ischemic attack (HR, 2.4; 95% CT, 1.3 to 4.1), and prestroke Barthel Index <20/20 (HR, 2.0, 95% CI, 1.3 to 3.2). Conclusions-One-year survivors of first-ever stroke continue to die over the next 4 years at a rate of approximately 10% per year, which is twice the rate expected among the general population of the same age and sex. The most common cause of death is cardiovascular disease. Long-term survival after stroke may be improved by early, active, and sustained implementation of effective strategies for preventing subsequent cardiovascular events.