971 resultados para HOMOZYGOUS MUTATION
Resumo:
Purpose: To assess the phenotype of patients in a large 3 generation Swiss family with X-linked retinitis pigmentosa (XLRP) due to a novel nonsense mutation Glu20stop in RP2 gene and to correlate with the genotype. Methods: 6 affected patients (1 male, 5 females, age range: 23 - 73 years) were assessed with a complete ophthalmologic examination. All had fundus autofluorescence images, standardised electroretinography, Goldmann visual fields and Optical Coherence Tomography. In addition, medical records of 2 affected male patients were reviewed. Blood sample was taken for molecular analysis. Results: The male patients were severely affected at a young age with early macular involvement. The youngest 23 y old male had also high myopia and vision of less than 0.05 according to Snellen EDTRS chart bilaterally. All 5 female carriers had some degree of rod-cone dystrophy, but no macular involvement. The visual acuity was 1.0 in the younger carriers, while the 73 years old had VA of 0.5. Two females had mild myopia (range -0.75 to -2) and one had anisometropia of 3.5D, with the more severely affected eye being myopic. Three out of 5 female carriers had optic nerve drusen. Conclusions: We report a novel Glu20stop mutation in RP2 gene, which is a rare cause of XLRP. Our description of severe phenotype in male patients with high myopia and early macular atrophy confirms previous reports. Unlike previous reports, all our female carriers had RP, but not macular involvement or high myopia. The identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.
Resumo:
PURPOSE: We characterized the pupil responses that reflect rod, cone, and melanopsin function in a genetically homogeneous cohort of patients with autosomal dominant retinitis pigmentosa (adRP). METHODS: Nine patients with Gly56Arg mutation of the NR2E3 gene and 12 control subjects were studied. Pupil and subjective visual responses to red and blue light flashes over a 7 log-unit range of intensities were recorded under dark and light adaptation. The pupil responses were plotted against stimulus intensity to obtain red-light and blue-light response curves. RESULTS: In the dark-adapted blue-light stimulus condition, patients showed significantly higher threshold intensities for visual perception and for a pupil response compared to controls (P = 0.02 and P = 0.006, respectively). The rod-dependent, blue-light pupil responses decreased with disease progression. In contrast, the cone-dependent pupil responses (light-adapted red-light stimulus condition) did not differ between patients and controls. The difference in the retinal sensitivity to blue and red stimuli was the most sensitive parameter to detect photoreceptor dysfunction. Unexpectedly, the melanopsin-mediated pupil response was decreased in patients (P = 0.02). CONCLUSIONS: Pupil responses of patients with NR2E3-associated adRP demonstrated reduced retinal sensitivity to dim blue light under dark adaptation, presumably reflecting decreased rod function. Rod-dependent pupil responses were quantifiable in all patients, including those with non-recordable scotopic electroretinogram, and correlated with the extent of clinical disease. Thus, the chromatic pupil light reflex can be used to monitor photoreceptor degeneration over a larger range of disease progression compared to standard electrophysiology.
Resumo:
BACKGROUND: Hypertrophic Cardiomyopathy (HCM) is a genetically heterogeneous disease. One specific mutation in the MYBPC3 gene is highly prevalent in center east of France giving an opportunity to define the clinical profile of this specific mutation. METHODS: HCM probands were screened for mutation in the MYH7, MYBPC3, TNNT2 and TNNI3 genes. Carriers of the MYBPC3 IVS20-2A>G mutation were genotyped with 8 microsatellites flanking this gene. The age of this MYBPC3 mutation was inferred with the software ESTIAGE. The age at first symptom, diagnosis, first complication, first severe complication and the rate of sudden death were compared between carriers of the IVS20-2 mutation (group A) and carriers of all other mutations (group B) using time to event curves and log rank test. RESULTS: Out of 107 HCM probands, 45 had a single heterozygous mutation in one of the 4 tested sarcomeric genes including 9 patients with the MYBPC3 IVS20-2A>G mutation. The IVS20-2 mutation in these 9 patients and their 25 mutation carrier relatives was embedded in a common haplotype defined after genotyping 4 polymorphic markers on each side of the MYBPC3 gene. This result supports the hypothesis of a common ancestor. Furthermore, we evaluated that the mutation occurred about 47 generations ago, approximately at the 10th century.We then compared the clinical profile of the IVS20-2 mutation carriers (group A) and the carriers of all other mutations (group B). Age at onset of symptoms was similar in the 34 group A cases and the 73 group B cases but group A cases were diagnosed on average 15 years later (log rank test p = 0.022). Age of first complication and first severe complication was delayed in group A vs group B cases but the prevalence of sudden death and age at death was similar in both groups. CONCLUSION: A founder mutation arising at about the 10th century in the MYBPC3 gene accounts for 8.4% of all HCM in center east France and results in a cardiomyopathy starting late and evolving slowly but with an apparent risk of sudden death similar to other sarcomeric mutations.
Resumo:
We report a 26-year-old female patient who was diagnosed within 4 years with chest sarcoma, lung adenocarcinoma, and breast cancer. While her family history was unremarkable, DNA sequencing of TP53 revealed a germline de novo non-sense mutation in exon 6 p.Arg213X. One year later, she further developed a contralateral ductal carcinoma in situ, and 18 months later a jaw osteosarcoma. This case illustrates the therapeutic pitfalls in the care of a young cancer patient with TP53 de novo germline mutations and the complications related to her first-line therapy. Suggestion is made to use the less stringent Chompret criteria for germline TP53 mutation screening. Our observation underlines the possibly negative effect of radiotherapy in generating second tumors in patients with a TP53 mutation. We also present a review of six previously reported cases, comparing their cancer phenotypes with those generally produced by TP53 mutations.
Resumo:
BACKGROUND: Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. METHODS: We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. RESULTS: In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. CONCLUSIONS: This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.
Resumo:
The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are insulinotropic factors released from the small intestine to the blood stream in response to oral glucose ingestion. The insulinotropic effect of GLP-1 is maintained in patients with Type II (non-insulin-dependent) diabetes mellitus, whereas, for unknown reasons, the effect of GIP is diminished or lacking. We defined the exon-intron boundaries of the human GIP receptor, made a mutational analysis of the gene and identified two amino acid substitutions, A207 V and E354Q. In an association study of 227 Caucasian Type II diabetic patients and 224 matched glucose tolerant control subjects, the allelic frequency of the A207 V polymorphism was 1.1% in Type II diabetic patients and 0.7% in control subjects (p = 0.48), whereas the allelic frequency of the codon 354 polymorphism was 24.9% in Type II diabetic patients versus 23.2% in control subjects. Interestingly, the glucose tolerant subjects (6% of the population) who were homozygous for the codon 354 variant had on average a 14% decrease in fasting serum C-peptide concentration (p = 0.01) and an 11% decrease in the same variable 30 min after an oral glucose load (p = 0.03) compared with subjects with the wild-type receptor. Investigation of the function of the two GIP receptor variants in Chinese hamster fibroblasts showed, however, that the GIP-induced cAMP formation and the binding of GIP to cells expressing the variant receptors were not different from the findings in cells expressing the wildtype GIP receptor. In conclusion, amino acid variants in the GIP receptor are not associated with random Type II diabetes in patients of Danish Caucasian origin or with altered GIP binding and GIP-induced cAMP production when stably transfected in Chinese hamster fibroblasts. The finding of an association between homozygosity for the codon 354 variant and reduced fasting and post oral glucose tolerance test (OGTT) serum C-peptide concentrations, however, calls for further investigations and could suggest that GIP even in the fasting state regulates the beta-cell secretory response.
Resumo:
Background:Congenital hypogonadotropic hypogonadism (HH), a rare disorder characterized by absent, partial, or delayed puberty, can be caused by the lack or deficient number of hypothalamic gonadotropin-releasing hormone (GnRH) neurons. SEMA3A was recently implicated in the etiology of the disorder, and Sema7A-deficient mice have a reduced number of GnRH neurons in their brains.Methods:SEMA3A and SEMA7A were screened by Sanger sequencing in altogether 50 Finnish HH patients (34 with Kallmann syndrome (KS; HH with hyposmia/anosmia) and 16 with normosmic HH (nHH)). In 20 patients, mutation(s) had already been found in genes known to be implicated in congenital HH.Results:Three heterozygous variants (c.458A>G (p.Asn153Ser), c.1253A>G (p.Asn418Ser), and c.1303G>A (p.Val435Ile)) were found in SEMA3A in three KS patients, two of which also had a mutation in FGFR1. Two rare heterozygous variants (c.442C>T (p.Arg148Trp) and c.1421G>A (p.Arg474Gln)) in SEMA7A were found in one male nHH patient with a previously identified KISS1R nonsense variant and one male KS patient with a previously identified mutation in KAL1, respectively.Conclusion:Our results suggest that heterozygous missense variants in SEMA3A and SEMA7A may modify the phenotype of KS but most likely are not alone sufficient to cause the disorder.
Resumo:
INTRODUCTION: Mutations in the TMEM70 are the most common cause of nuclear ATP synthase deficiency resulting in a distinctive phenotype characterized by severe neonatal hypotonia, hypertrophic cardiomyopathy (HCMP), facial dysmorphism, severe lactic acidosis, hyperammonemia and 3-methylglutaconic aciduria (3-MGA). METHODS AND RESULTS: We collected 9 patients with genetically confirmed TMEM70 defect from 8 different families. Six were homozygous for the c.317-2A>G mutation, 2 were compound heterozygous for mutations c.317-2A>G and c.628A>C and 1 was homozygous for the novel c.701A>C mutation. Generalized hypotonia, lactic acidosis, hyperammonemia and 3-MGA were present in all since birth. Five patients presented acute respiratory distress at birth requiring intubation and ventilatory support. HCMP was detected in 5 newborns and appeared a few months later in 3 additional children. Five patients showed a severe and persistent neonatal pulmonary hypertension (PPHN) requiring Nitric Oxide (NO) and/or sildenafil administration combined in 2 cases with high-frequency oscillatory (HFO) ventilation. In 3 of these patients, echocardiography detected signs of HCMP at birth. CONCLUSIONS: PPHN is a life-threatening poorly understood condition with bad prognosis if untreated. Pulmonary hypertension has rarely been reported in mitochondrial disorders and, so far, it has been described in association with TMEM70 deficiency only in one patient. This report further expands the clinical and genetic spectrum of the syndrome indicating PPHN as a frequent and life-threatening complication regardless of the type of mutation. Moreover, in these children PPHN appears even in the absence of an overt cardiomyopathy, thus representing an early sign and a clue for diagnosis.
Resumo:
The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.