982 resultados para HLA DQB1 antigen
Resumo:
NY-ESO-1 is a tumor-specific shared antigen with distinctive immunogenicity. Both CD8+ T cells and class-switched Ab responses have been detected from patients with cancer. In this study, a CD4+ T cell line was generated from peripheral blood mononuclear cells of a melanoma patient and was shown to recognize NY-ESO-1 peptides presented by HLA-DP4, a dominant MHC class II allele expressed in 43–70% of Caucasians. The ESO p157–170 peptide containing the core region of DP4-restricted T cell epitope was present in a number of tumor cell lines tested and found to be recognized by both CD4+ T cells as well as HLA-A2-restricted CD8+ T cells. Thus, the ESO p157–170 epitope represents a potential candidate for cancer vaccines aimed at generating both CD4+ and CD8+ T cell responses. More importantly, 16 of 17 melanoma patients who developed Ab against NY-ESO-1 were found to be HLA-DP4-positive. CD4+ T cells specific for the NY-ESO-1 epitopes were generated from 5 of 6 melanoma patients with NY-ESO-1 Ab. In contrast, no specific DP4-restricted T cells were generated from two patients without detectable NY-ESO-1 Ab. These results suggested that NY-ESO-1-specific DP4-restricted CD4+ T cells were closely associated with NY-ESO-1 Ab observed in melanoma patients and might play an important role in providing help for activating B cells for NY-ESO-1-specific Ab production.
Resumo:
Antigens of pathogenic microbes that mimic autoantigens are thought to be responsible for the activation of autoreactive T cells. Viral infections have been associated with the development of the neuroendocrine autoimmune diseases type 1 diabetes and stiff-man syndrome, but the mechanism is unknown. These diseases share glutamic acid decarboxylase (GAD65) as a major autoantigen. We screened synthetic peptide libraries dedicated to bind to HLA-DR3, which predisposes to both diseases, using clonal CD4+ T cells reactive to GAD65 isolated from a prediabetic stiff-man syndrome patient. Here we show that these GAD65-specific T cells crossreact with a peptide of the human cytomegalovirus (hCMV) major DNA-binding protein. This peptide was identified after database searching with a recognition pattern that had been deduced from the library studies. Furthermore, we showed that hCMV-derived epitope can be naturally processed by dendritic cells and recognized by GAD65 reactive T cells. Thus, hCMV may be involved in the loss of T cell tolerance to autoantigen GAD65 by a mechanism of molecular mimicry leading to autoimmunity.
Resumo:
The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Vα transcripts (Vα1 and Vα2) and one TCR Vβ transcript (Vβ13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Vα1Vβ13 combination specifically recognized both the HLA-A2+ and HLA-DR1+ target cells, whereas the Vα2Vβ13 combination did not result in a TCR on the cell surface. Thus a single TCRαβ complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.
Resumo:
A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.
Resumo:
The nonclassical major histocompatibility complex class II molecule HLA-DM (DM) has recently been shown to play a central role in the class II-associated antigen presentation pathway: DM releases invariant chain-derived CLIP peptides (class II-associated invariant chain protein peptide) from HLA-DR (DR) molecules and thereby facilitates loading with antigenic peptides. Some observations have led to the suggestion that DM acts in a catalytic manner, but so far direct proof is missing. Here, we investigated in vitro the kinetics of exchange of endogenously bound CLIP for various peptides on DR1 and DR2a molecules: we found that in the presence of DM the peptide loading process follows Michaelis-Menten kinetics with turnover numbers of 3-12 DR molecules per minute per DM molecule, and with KM values of 500-1000 nM. In addition, surface plasmon resonance measurements showed that DM interacts efficiently with DR-CLIP complexes but only weakly with DR-peptide complexes isolated from DM-positive cells. Taken together, our data provide evidence that DM functions as an enzyme-like catalyst of peptide exchange and favors the generation of long-lived DR-peptide complexes that are no longer substrates for DM.
Resumo:
Natural killer (NK) cells expressing specific p58 NK receptors are inhibited from lysing target cells that express human leukocyte antigen (HLA)-C class I major histocompatibility complex molecules. To investigate the interaction between p58 NK receptors and HLA-Cw4, the extracellular domain of the p58 NK receptor specific for HLA-Cw4 was overexpressed in Escherichia coli and refolded from purified inclusion bodies. The refolded NK receptor is a monomer in solution. It interacts specifically with HLA-Cw4, blocking the binding of a p58-Ig fusion protein to HLA-Cw4-expressing cells, but does not block the binding of a p58-Ig fusion protein specific for HLA-Cw3 to HLA-Cw3-expressing cells. The bacterially expressed extracellular domain of HLA-Cw4 heavy chain and beta2-microglobulin were refolded in the presence of a HLA-Cw4-specific peptide. Direct binding between the soluble p58 NK receptor and the soluble HLA-Cw4-peptide complex was observed by native gel electrophoresis. Titration binding assays show that soluble monomeric receptor forms a 1:1 complex with HLA-Cw4, independent of the presence of Zn2+. The formation of complexes between soluble, recombinant molecules indicates that HLA-Cw4 is sufficient for specific ligation by the NK receptor and that neither glycoprotein requires carbohydrate for the interaction.
Resumo:
The structure of the human major histocompatibility complex (MHC) class II molecule HLA-DR1 derived from the human lymphoblastoid cell line LG-2 has been determined in a complex with the Staphylococcus aureus enterotoxin B superantigen. The HLA-DR1 molecule contains a mixture of endogenous peptides derived from cellular or serum proteins bound in the antigen-binding site, which copurify with the class II molecule. Continuous electron density for 13 amino acid residues is observed in the MHC peptide-binding site, suggesting that this is the core length of peptide that forms common interactions with the MHC molecule. Electron density is also observed for side chains of the endogenous peptides. The electron density corresponding to peptide side chains that interact with the DR1-binding site is more clearly defined than the electron density that extends out of the binding site. The regions of the endogenous peptides that interact with DRI are therefore either more restricted in conformation or sequence than the peptide side chains or amino acids that project out of the peptide-binding site. The hydrogen-bond interactions and conformation of a peptide model built into the electron density are similar to other HLA-DR-peptide structures. The bound peptides assume a regular conformation that is similar to a polyproline type II helix. The side-chain pockets and conserved asparagine residues of the DR1 molecule are well-positioned to interact with peptides in the polyproline type II conformation and may restrict the range of acceptable peptide conformations.
Resumo:
HLA-G is a nonclassical class I major histocompatibility complex molecule with a restricted pattern of expression that includes the placental extravillus cytotrophoblast cells in direct contact with maternal tissues. Circumstantial evidence suggests that HLA-G may play a role in protection of the semiallogeneic human fetus. We examined whether HLA-G is expressed during the critical period of preimplantation human development and whether expression of this molecule could be correlated with the cleavage rate of embryos. Using reverse transcription PCR on surplus human embryos and unfertilized oocytes from patients undergoing in vitro fertilization we detected HLA-G heavy chain mRNA in 40% of 148 of blastocysts tested. The presence of HLA-G mRNA was also detected in unfertilized oocytes and in early embryos, but not in control cumulus oophorus cells. beta 2-Microglobulin mRNA was also found in those embryos expressing HLA-G. In concordance with our mRNA data, a similar proportion of embryos stained positive for HLA-G utilizing a specific monoclonal antibody. Interestingly, expression of HLA-G mRNA was associated with an increased cleavage rate, as compared to embryos lacking HLA-G transcript. Thus, HLA-G could be a functional homologue of the mouse Qa-2 antigen, which has been implicated in differences in the rate of preimplantation embryo development. To our knowledge, the presence of HLA-G mRNA and protein in human preimplantation embryos and oocytes has not been reported previously. The correlation of HLA-G mRNA expression with cleavage rate suggests that this molecule may play an important role in human pre-embryo development.
Resumo:
A major barrier to the design of immunotherapeutics and vaccines for cancer is the idiosyncratic nature of many tumor antigens and the possibility that T cells may be tolerant of broadly distributed antigens. We have devised an experimental strategy that exploits species differences in protein sequences to circumvent tolerance of high-affinity T cells. HLA transgenic mice were used to obtain cytotoxic T lymphocytes specific for peptides from the human p53 tumor-suppressor molecule presented in association with HLA-A2.1. Although such p53-specific cytotoxic T cells did not recognize nontransformed human cells, they were able to lyse a wide variety of human tumor cells lines, thus confirming the existence of broadly distributed determinants that may serve as targets for immunotherapy.
Resumo:
Human melanoma cells can process the MAGE-1 gene product and present the processed nonapeptide EADPTGHSY on their major histocompatibility complex class I molecules, HLA-A1, as a determinant for cytolytic T lymphocytes (CTLs). Considering that autologous antigen presenting cells (APCs) pulsed with the synthetic nonapeptide might, therefore, be immunogenic, melanoma patients whose tumor cells express the MAGE-1 gene and who are HLA-A1+ were immunized with a vaccine made of cultured autologous APCs pulsed with the synthetic nonapeptide. Analyses of the nature of the in vivo host immune response to the vaccine revealed that the peptide-pulsed APCs are capable of inducing autologous melanoma-reactive and the nonapeptide-specific CTLs in situ at the immunization site and at distant metastatic disease sites.
Resumo:
The BZLF1 antigen of Epstein-Barr virus includes three overlapping sequences of different lengths that conform to the binding motif of human leukocyte antigen (HLA) B*3501. These 9-mer ((56)LPOGQLTAy(64)), 11-mer ((54)EPLPQGQLTAy(64)), and 13-mer ((52)LPEPLPQGQLTAY(64)) peptides all bound well to B*3501; however, the CTL response in individuals expressing this HILA allele was directed strongly and exclusively towards the 11-mer peptide. In contrast, EBV-exposed donors expressing HLA B*3503 showed no significant CTL response to these peptides because the single amino acid difference between B*3501 and B*3503 within the F pocket inhibited HLA binding by these peptides. The extraordinarily long 13-mer peptide was the target for the CTL response in individuals expressing B*3508, which differs from B*3501 at a single position within the D pocket (B*3501, 156 Leucine; B*3508, 156 Arginine). This minor difference was shown to enhance binding of the 13-mer peptide, presumably through a stabilizing interaction between the negatively charged glutamate at position 3 of the peptide and the positively charged arginine at HLA position 156. The 13-mer epitope defined in this study represents the longest class I-binding viral epitope identified to date as a minimal determinant. Furthermore, the potency of the response indicates that peptides of this length do not present a major structural barrier to CTL recognition.
Resumo:
Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules ( proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability ( area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets termed T-cell epitope hotspots. MULTIPRED is available at http:// antigen.i2r.a-star.edu.sg/ multipred/.
Resumo:
Dendritic cell (DC) defects are an important component of immunosuppression in cancer. Here, we assessed whether cancer could affect circulating DC populations and its correlation with tumor progression. The blood DC compartment was evaluated in 136 patients with breast cancer, prostate cancer, and malignant glioma. Phenotypic, quantitative, and functional analyses were performed at various stages of disease. Patients had significantly fewer circulating myeloid (CD11c(+)) and plasmacytoid (CD123(+)) DC, and a concurrent accumulation of CD11c(-)CD123(-) immature cells that expressed high levels of HLA-DR+ immature cells (DR+IC). Although DR+IC exhibited a limited expression of markers ascribed to mature hematopoietic lineages, expression of HLA-DR, CD40, and CD86 suggested a role as antigen-presenting cells. Nevertheless, DR+IC had reduced capacity to capture antigens and elicited poor proliferation and interferon-gamma secretion by T-lymphocytes. Importantly, increased numbers of DR+IC correlated with disease status. Patients with metastatic breast cancer showed a larger number of DR+IC in the circulation than patients with local/nodal disease. Similarly, in patients with fully resected glioma, the proportion of DR+IC in the blood increased when evaluation indicated tumor recurrence. Reduction of blood DC correlating with accumulation of a population of immature cells with poor immunologic function may be associated with increased immunodeficiency observed in cancer.
Resumo:
Human leukocyte antigen (HLA)-DM is a critical participant in antigen presentation that catalyzes the dissociation of the Class II-associated Invariant chain-derived Peptide (CLIP) from the major histocompatibility complex (MHC) Class II molecules. There is competition amongst peptides for access to an MHC Class II groove and it has been hypothesised that DM functions as a 'peptide editor' that catalyzes the replacement of one peptide for another within the groove. It is established that the DM catalyst interacts directly with the MHC Class II but the precise location of the interface is unknown. Here, we combine previously described mutational data with molecular docking and energy minimisation simulations to identify a putative interaction site of >4000A2 which agrees with known point mutational data for both the DR and DM molecule. The docked structure is validated by comparison with experimental data and previously determined properties of protein-protein interfaces. A possible dissociation mechanism is suggested by the presence of an acidic cluster near the N terminus of the bound peptide.