983 resultados para HL-60 cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulating evidence suggests that the mitochondrial molecular chaperone heat shock protein 60 (hsp60) also can localize in extramitochondrial sites. However, direct evidence that hsp60 functions as a chaperone outside of mitochondria is presently lacking. A 60-kDa protein that is present in the plasma membrane of a human leukemic CD4+ CEM-SS T cell line and is phosphorylated by protein kinase A (PKA) was identified as hsp60. An 18-kDa plasma membrane-associated protein coimmunoprecipitated with hsp60 and was identified as histone 2B (H2B). Hsp60 physically associated with H2B when both molecules were in their dephospho forms. By contrast, PKA-catalyzed phosphorylation of both hsp60 and H2B caused dissociation of H2B from hsp60 and loss of H2B from the plasma membrane of intact T cells. These results suggest that (i) hsp60 and H2B can localize in the T cell plasma membrane; (ii) hsp60 functions as a molecular chaperone for H2B; and (iii) PKA-catalyzed phosphorylation of both hsp60 and H2B appears to regulate the attachment of H2B to hsp60. We propose a model in which phosphorylation/dephosphorylation regulates chaperoning of H2B by hsp60 in the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translation of thymidylate synthase (TS) mRNA is controlled by its own protein end-product TS in a negative autoregulatory manner. Disruption of this regulation results in increased synthesis of TS and may lead to the development of cellular drug resistance to TS-directed anticancer agents. As a strategy to inhibit TS expression, antisense 2′-O-methyl RNA oligoribonucleotides (ORNs) were designed to directly target the 5′ upstream cis-acting regulatory element (nucleotides 80–109) of TS mRNA. A 30 nt ORN, HYB0432, inhibited TS expression in human colon cancer RKO cells in a dose-dependent manner but had no effect on the expression of β-actin, α-tubulin or topoisomerase I. TS expression was unaffected by treatment with control sense or mismatched ORNs. HYB0504, an 18 nt ORN targeting the same core sequence, also repressed expression of TS protein. However, further reduction in oligo size resulted in loss of antisense activity. Following HYB0432 treatment, TS protein levels were reduced by 60% within 6 h and were maximally reduced by 24 h. Expression of p53 protein was inversely related to that of TS, suggesting that p53 expression may be directly linked to intracellular levels of TS. Northern blot analysis demonstrated that TS mRNA was unaffected by HYB0432 treatment. The half-life of TS protein was unchanged after antisense treatment suggesting that the mechanism of action of antisense ORNs is mediated through a process of translational arrest. These findings demonstrate that an antisense ORN targeted at a critical cis-acting element on TS mRNA can specifically inhibit expression of TS protein in RKO cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation by abscisic acid (ABA) and Ca2+ of broad bean (Vicia faba) abaxial and adaxial guard cell movements and inward K+ currents were compared. One millimolar Ca2+ in the bathing medium inhibited abaxial stomatal opening by 60% but only inhibited adaxial stomatal opening by 15%. The addition of 1 μm ABA in the bathing medium resulted in 80% inhibition of abaxial but only 45% inhibition of adaxial stomatal opening. Similarly, ABA and Ca2+ each stimulated greater abaxial stomatal closure than adaxial stomatal closure. Whole-cell patch-clamp results showed that the inward K+ currents of abaxial guard cells were inhibited by 60% (−180 mV) in the presence of 1.5 μm Ca2+ in the cytoplasm, whereas the inward K+ currents of adaxial guard cells were not affected at all by the same treatment. Although 1 μm ABA in the cytoplasm inhibited the inward K+ currents to a similar extent for both abaxial and adaxial guard cells, the former were more sensitive to ABA applied externally. These results suggest that the abaxial stomata are more sensitive to Ca2+ and ABA than adaxial stomata in regard to stomatal opening and closing processes and that the regulation of the inward K+ currents by ABA may not proceed via a Ca2+-signaling pathway in adaxial guard cells. Therefore, there may be different pathways for ABA- and Ca2+-mediated signal transduction in abaxial and adaxial guard cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA encoding a novel, inwardly rectifying K+ (K+in) channel protein, SKT1, was cloned from potato (Solanum tuberosum L.). SKT1 is related to members of the AKT family of K+in channels previously identified in Arabidopsis thaliana and potato. Skt1 mRNA is most strongly expressed in leaf epidermal fragments and in roots. In electrophysiological, whole-cell, patch-clamp measurements performed on baculovirus-infected insect (Spodoptera frugiperda) cells, SKT1 was identified as a K+in channel that activates with slow kinetics by hyperpolarizing voltage pulses to more negative potentials than −60 mV. The pharmacological inhibitor Cs+, when applied externally, inhibited SKT1-mediated K+in currents half-maximally with an inhibitor concentration (IC50) of 105 μm. An almost identical high Cs+ sensitivity (IC50 = 90 μm) was found for the potato guard-cell K+in channel KST1 after expression in insect cells. SKT1 currents were reversibly activated by a shift in external pH from 6.6 to 5.5, which indicates a physiological role for pH-dependent regulation of AKT-type K+in channels. Comparative studies revealed generally higher current amplitudes for KST1-expressing cells than for SKT1-expressing insect cells, which correlated with a higher targeting efficiency of the KST1 protein to the insect cell's plasma membrane, as demonstrated by fusions to green fluorescence protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of Matsumoto and Ohta [Matsumoto, K. & Ohta, T. (1992) Chromosoma 102, 60-65; Matsumoto, K. & Ohta, T. (1995) Mutat. Res. 326, 93-98] to induce large numbers of endoreduplicated Chinese hamster ovary cells has now been coupled with the fluorescence-plus-Giemsa method of Perry and Wolff [Perry, P. & Wolff, S. (1974) Nature (London) 251, 156-158] to produce harlequin endoreduplicated chromosomes that after the third round of DNA replication are composed of a chromosome with a light chromatid and a dark chromatid in close apposition to its sister chromosome containing two light chromatids. Unless the pattern is disrupted by sister chromatid exchange (SCE), the dark chromatid is always in the center, so that the order of the chromatids is light-dark light-light. The advent of this method, which permits the observation of SCEs in endoreduplicated cells, makes it possible to determine with great ease in which cell cycle an SCE occurred. This now allows us to approach several vexing questions about the induction of SCEs (genetic damage and its repair) after exposure to various types of mutagenic carcinogens. The present experiments have allowed us to observe how many cell cycles various types of lesions that are induced in DNA by a crosslinking agent, an alkylating agent, or ionizing radiation, and that are responsible for the induction of SCEs, persist before being repaired and thus lose their ability to inflict genetic damage. Other experiments with various types of mutagenic carcinogens and various types of cell lines that have defects in different DNA repair processes, such as mismatch repair, excision repair, crosslink repair, and DNA-strand-break repair, can now be carried out to determine the role of these types of repair in removing specific types of lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Albumin-binding proteins identified in vascular endothelial cells have been postulated to contribute to the transport of albumin via a process involving transcytosis. In the present study, we have purified and characterized a 57- to 60-kDa (gp60) putative albumin-binding protein from bovine pulmonary microvessel endothelial cells. The endothelial cell membranes were isolated from cultured cells by differential centrifugation and solubilized with sodium cholate and urea. The solubilized extract was concentrated after dialysis by ethanol precipitation and reextracted with Triton X-100, and the resulting extract was subjected to DEAE-cellulose column chromatography. Proteins eluted from this column were further separated using preparative sodium dodecyl sulfate/polyacrylamide gel electrophoresis and used for immunizing rabbits. Fluorescence-activated cell sorter analysis using the anti-gp60 antibodies demonstrated the expression of gp60 on the endothelial cell surface. Affinity-purified anti-gp60 antibodies inhibited approximately 90% of the specific binding of 125I-labeled albumin to bovine pulmonary microvessel endothelial cell surface. The anti-gp60 antibodies reacted with gp60 from bovine pulmonary artery, bovine pulmonary microvessel, human umbilical vein, and rat lung endothelial cell membranes. Bovine anti-gp60 antibodies also reacted with bovine secreted protein, acidic and rich in cysteine (SPARC). However, bovine SPARC NH2-terminal sequence (1-56 residues) antibodies did not react with gp60, indicating that the endothelial cell-surface-associated albumin-binding protein gp60 was different from the secreted albumin-binding protein SPARC. We conclude that the endothelial cell-surface-associated gp60 mediates the specific binding of native albumin to endothelial cells and thus may regulate the uptake of albumin and its transcytosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzene is a ubitiquous human environment mental carcinogen. One of the major metabolites is hydroquinone, which is oxidized in vivo to give p-benzoquinone (p-BQ). Both metabolites are toxic to human cells. p-BQ reacts with DNA to form benzetheno adducts with deoxycytidine, deoxyadenosine, and deoxyguanosine. In this study we have synthesized the exocyclic compounds 3-hydroxy-3-N4-benzetheno-2'-deoxycytidine (p-BQ-dCyd) and 9-hydroxy-1,N6-benzetheno-2'-deoxyadenosine (p-BQ-dAdo), respectively, by reacting deoxycytidine and deoxyadenosine with p-BQ. These were converted to the phosphoamidites, which were then used to prepare site-specific oligonucleotides with either the p-BQ-dCyd or p-BQ-dAdo adduct (pbqC or pbqA in sequences) at two different defined positions. These oligonucleotides were efficiently nicked 5' to the adduct by partially purified HeLa cell extracts--the pbqC-containing oligomer more rapidly than the pbqA-containing oligomer. In contrast to the enzyme binding to derivatives produced by the vinyl chloride metabolite chloroacetaldehyde, the oligonucleotides up to 60-mer containing p-BQ adducts did not bind measurably to the same enzyme preparation in a gel retardation assay. Furthermore, there was no competition for the binding observed between oligonucleotides containing 1,N6-etheno A deoxyadenosine (1,N6-etheno-dAdo; epsilon A in sequences) and these oligomers containing either of the p-BQ adducts, even at 120-fold excess. When highly purified fast protein liquid chromatography (FPLC) enzyme fractions were obtained, there appeared to be two closely eluting nicking activities. One of these enzymes bound and cleaved the epsilon A-containing deoxyoligonucleotide. The other enzyme cleaved the pbqA- and pbqC-containing deoxyoligonucleotides. One additional unexpected fact was that bulk p-BQ-treated salmon sperm DNA did compete effectively with the epsilon A-containing oligonucleotide for protein binding. This raises the possibility that such DNA contains other, as-yet-uncharacterized adducts that are recognized by the same enzyme that recognizes the etheno adducts. In summary, we describe a previously undescribed human DNA repair activity, possibly a glycosylase, that excises from DNA pbqC and pbqA, exocyclic adducts resulting from reaction of deoxycytidine and deoxyadenosine with the benzene metabolite, p-BQ. This glycosylase activity is not identical to the one previously reported from this laboratory as excising the four etheno bases from DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in the death of some cells in a manner suggestive of apoptosis. Successive rounds of prolonged incubation at confluence of the surviving cells produce increasing neoplastic transformation in the form of increments in saturation density and transformed focus formation. Cells from the postconfluent cultures are given a recovery period of various lengths to remove the direct inhibitory effect of confluence before their growth properties are studied. It is found that with each round of confluence the exponential growth rate of the cells at low densities gets lower and the size of isolated colonies of the same cells shows a similar progressive reduction. The decreased growth rate of cells from the third round of confluence persists for > 60 generations of growth at low density. The proportion of colonies containing giant cells is much higher after a 2-day recovery from confluence than after a 7-day recovery. Retardation of growth at low density and increased saturation density appear to be two sides of the same coin: both occur in the entire population of cells and precede the formation of transformed foci. We propose that the slowdown in growth and the formation of giant cells result from heritable damage to the cells, which in turn drives their transformation. Similar results have been reported for the survivors of x-irradiation and of treatment with chemical carcinogens and are associated with the aging process in animals. We suggest that these changes result from free radical damage to membrane lipids with particular damage to lysosomes. Proteases and nucleases would then be released to progressively modify the growth behavior and genetic stability of the cells toward autonomous proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early pregnancy factor (EPF) is a secreted protein with immunosuppressive and growth factor properties. It has been shown to suppress the delayed-type hypersensitivity response in mice as well as acute and chronic forms of experimental autommume encephalomyelitis in rats and mice, respectively. In previous studies, we have demonstrated that EPF binds to a population of lymphocytes and we hypothesized that it mediates its suppressive effects by binding to CD4(+) T cells. In the present study, we isolated monocytes and subpopulations of lymphocytes and labelled them with fluoresceinated EPF in order to determine which populations bind EPF. We demonstrated that EPF binds specifically to CD4(+), CD8(+), CD14(+) (monocytes) and CD56(+) NK cells but not to CD19(+) B cells. The identity of the molecule(s) on the cell surface that is targeted by EPF is unknown, but as EPF is an extracellular homologue of the intracellular protein chaperonin 10 (Cpn 10), we examined the possibility that the EPF receptor is a membrane-associated form of chaperonin 60 (Cpn60), the functional associate of Cpn 10 within the cell. The EPF target molecule on lymphocytes was visualized by chemical cross-linking of exogenous iodinated Cpn10 to cells and probed with anti-Cpn60. The effect of anti-Cpn60 on activity in the EPF bioassay, the rosette inhibition test, was also examined. In both instances, no specific interaction of this antibody and the putative receptor was observed. It was concluded that the cell surface molecule targeted by EPF is unlikely to be a homologue of Cpn60.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/aims: Chronic infections such as those caused by Chlamydia pneumoniae and periodontopathic bacteria such as Porphyromonas gingivalis have been associated with atherosclerosis, possibly due to cross-reactivity of the immune response to bacterial GroEL with human heat shock protein (hHSP) 60. Methods: We examined the cross-reactivity of anti-GroEL and anti-P. gingivalis antibodies with hHSP60 in atherosclerosis patients and quantified a panel of six pathogens in atheromas. Results: After absorption of plasma samples with hHSP60, there were variable reductions in the levels of anti-GroEL and anti-P. gingivalis antibodies, suggesting that these antibodies cross-reacted with hHSP60. All of the artery specimens were positive for P. gingivalis. Fusobacterium nucleatum, Tannerella forsythia, C. pneumoniae, Helicobacter pylori, and Haemophilus influenzae were found in 84%, 48%, 28%, 4%, and 4% of arteries, respectively. The prevalence of the three periodontopathic microorganisms, P. gingivalis, F. nucleatum and T. forsythia, was significantly higher than that of the remaining three microorganisms. Conclusions: These results support the hypothesis that in some patients, cross-reactivity of the immune response to bacterial HSPs including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may be a possible mechanism for the association between atherosclerosis and periodontal infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for infection and inflammation in atherogenesis is widely accepted. Arterial endothelium has been shown to express heat shock protein 60 (HSP60) and, since human (hHSP60) and bacterial (GroEL) HSP60s are highly conserved, the immune response to bacteria may result in cross-reactivity, leading to endothelial damage and thus contribute to the pathogenesis of atherosclerosis. In this study, GroEL-specific T-cell lines from peripheral blood and GroEL-, hHSP60-, and Porphyromonas gingivalis-specific T-cell lines from atherosclerotic plaques were established and characterized in terms of their cross-reactive proliferative responses, cytokine and chemokine profiles, and T-cell receptor (TCR) V beta expression by flow cytometry. The cross-reactivity of several lines was demonstrated. The cytokine profiles of the artery T-cell lines specific for GroEL, hHSP60, and P. gingivalis demonstrated Th2 phenotype predominance in the CD4 subset and Tc0 phenotype predominance in the CD8 subset. A higher proportion of CD4 cells were positive for interferon-inducible protein 10 and RANTES, with low percentages of cells positive for monocyte chemoattractant protein 1 and macrophage inflammatory protein la, whereas a high percentage of CD8 cells expressed all four chemokines. Finally, there was overexpression of the TCR V beta 5.2 family in all lines. These cytokine, chemokine, and V beta profiles are similar to those demonstrated previously for P. gingivalis-specific lines established from periodontal disease patients. These results support the hypothesis that in some patients cross-reactivity of the immune response to bacterial HSPs, including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may explain the apparent association between atherosclerosis and periodontal infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. The effects of CRP on primary human monocyte adhesion molecule expression and interaction with the endothelium have not been studied. Herein, we describe an investigation into the phenotypic and functional consequences of CRP binding to peripheral blood monocytes ex vivo. Peripheral whole blood was collected from healthy, non-smoking males. Mononuclear cells (MNC) and monocytes were isolated by differential centrifugation using lymphoprep and Dynal negative isolation kit, respectively. Cells were exposed to CRP from 0 to 250 μg/ml for 0-60 min at 37°C and analysed for (a) CD11b, PECAM-1 (CD31) and CD32 expression by flow cytometry and (b) adhesion to LPS (1 μg/ml; 0-24 h) treated human umbilical vein endothelial cells (HUVEC). CD14+ monocyte expression of CD11b increased significantly up to twofold when exposed to CRP, compared to controls. There was no significant difference in CD32 expression, whereas CD31 expression decreased after exposure to CRP. CRP treatment of monocytes inhibited their adhesion to early LPS-activated HUVEC (0-5 h). However, the adhesion of CRP-treated monocytes to HUVEC was significantly greater to late activation antigens on HUVEC (24 h, LPS) compared to controls. We have shown that CRP can affect monocyte activation ex vivo and induce phenotypic changes that result in an altered recruitment to endothelial cells. This study provides the first evidence for a further role for C-reactive protein in both monocyte activation and adhesion, which may be of importance during an inflammatory event.