862 resultados para HIGH-INTENSITY LASER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping. In the field of fibre optical sensing LPGs written in photonic crystal fibre have a distinct advantage of low temperature sensitivity over gratings written in conventional fibre and thus minimal temperature cross-sensitivity. Previous studies have indicated that LPGs written by a point-by-point inscription scheme using a low repetition femtosecond laser exhibit post-fabrication evolution leading to temporal instabilities at room temperatures with respect to spectral location, strength and birefringence of the attenuation bands. These spectral instabilities of LPGs are studied in photonic crystal fibres (endlessly single mode microstructure fibre) to moderately high temperatures 100°C to 200°C and their performance compared to fusion-arc fabricated LPG. Initial results suggest that the fusion-arc fabricated LPG demonstrate less spectral instability for a given constant and moderate temperature, and are similar to the results obtained when inscribed in a standard single mode fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Duke Free-electron laser (FEL) system, driven by the Duke electron storage ring, has been at the forefront of developing new light source capabilities over the past two decades. In 1999, the Duke FEL demonstrated the first lasing of a storage ring FEL in the vacuum ultraviolet (VUV) region at $194$ nm using two planar OK-4 undulators. With two helical undulators added to the outboard sides of the planar undulators, in 2005 the highest FEL gain ($47.8\%$) of a storage ring FEL was achieved using the Duke FEL system with a four-undulator configuration. In addition, the Duke FEL has been used as the photon source to drive the High Intensity $\gamma$-ray Source (HIGS) via Compton scattering of the FEL beam and electron beam inside the FEL cavity. Taking advantage of FEL's wavelength tunability as well as the adjustability of the energy of the electron beam in the storage ring, the nearly monochromatic $\gamma$-ray beam has been produced in a wide energy range from $1$ to $100$ MeV at the HIGS. To further push the FEL short wavelength limit and enhance the FEL gain in the VUV regime for high energy $\gamma$-ray production, two additional helical undulators were installed in 2012 using an undulator switchyard system to allow switching between the two planar and two helical undulators in the middle section of the FEL system. Using different undulator configurations made possible by the switchyard, a number of novel capabilities of the storage ring FEL have been developed and exploited for a wide FEL wavelength range from infrared (IR) to VUV. These new capabilities will eventually be made available to the $\gamma$-ray operation, which will greatly enhance the $\gamma$-ray user research program, creating new opportunities for certain types of nuclear physics research.

With the wide wavelength tuning range, the FEL is an intrinsically well-suited device to produce lasing with multiple colors. Taking advantage of the availability of an undulator system with multiple undulators, we have demonstrated the first two-color lasing of a storage ring FEL. Using either a three- or four-undulator configuration with a pair of dual-band high reflectivity mirrors, we have achieved simultaneous lasing in the IR and UV spectral regions. With the low-gain feature of the storage ring FEL, the power generated at the two wavelengths can be equally built up and precisely balanced to reach FEL saturation. A systematic experimental program to characterize this two-color FEL has been carried out, including precise power control, a study of the power stability of two-color lasing, wavelength tuning, and the impact of the FEL mirror degradation. Using this two-color laser, we have started to develop a new two-color $\gamma$-ray beam for scientific research at the HIGS.

Using the undulator switchyard, four helical undulators installed in the beamline can be configured to not only enhance the FEL gain in the VUV regime, but also allow for the full polarization control of the FEL beams. For the accelerator operation, the use of helical undulators is essential to extend the FEL mirror lifetime by reducing radiation damage from harmonic undulator radiation. Using a pair of helical undulators with opposite helicities, we have realized (1) fast helicity switching between left- and right-circular polarizations, and (2) the generation of fully controllable linear polarization. In order to extend these new capabilities of polarization control to the $\gamma$-ray operation in a wide energy range at the HIGS, a set of FEL polarization diagnostic systems need to be developed to cover the entire FEL wavelength range. The preliminary development of the polarization diagnostics for the wavelength range from IR to UV has been carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To determine the effect of acute bouts of moderate- and high-intensity walking exercise on non-exercise activity thermogenesis (NEAT) in overweight and obese adults. ---------- METHOD: 16 participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60 minutes on a motorized treadmill at 6 km.h. The 60-minute HIE session consisted of walking in 5-min intervals at 6 km.h and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer on three days before, the day of, and three days following the exercise sessions. ---------- RESULTS: There was no significant difference in NEAT vector magnitude (counts.min) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either MIE or HIE protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with exercise day (P = 0.32). However during the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. ---------- CONCLUSION: A single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, monitoring NEAT on a third day allowed the detection of a 48-h delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a previous chapter (Dean and Kavanagh, Chapter 37), the authors made a case for applying low intensity (LI) cognitive behaviour therapy (CBT) to people with serious mental illness (SMI). As in other populations, LI CBT interventions typically deal with circumscribed problems or behaviours. LI CBT retains an emphasis on self-management, has restricted content and segment length, and does not necessarily require extensive CBT training. In applying these interventions to SMI, adjustments may be needed to address cognitive and symptomatic difficulties often faced by these groups. What may take a single session in a less affected population may require several sessions or a thematic application of the strategy within case management. In some cases, the LI CBT may begin to appear more like a high-intensity (HI) intervention, albeit simple and with many LI CBT characteristics still retained. So, if goal setting were introduced in one or two sessions, it could clearly be seen as an LI intervention. When applied to several different situations and across many sessions, it may be indistinguishable from a simple HI treatment, even if it retains the same format and is effectively applied by a practitioner with limited CBT training. ----- ----- In some ways, LI CBT should be well suited to case management of patients with SMI. treating staff typically have heavy workloads, and find it difficult to apply time-consuming treatments (Singh et al. 2003). LI CBT may allow provision of support to greater numbers of service users, and allow staff to spend more time on those who need intensive and sustained support. However, the introduction of any change in practice has to address significant challenges, and LI CBT is no exception. ----- ----- Many of the issues that we face in applying LI CBT to routine case management in a mnetal health service and their potential solutions are essentially the same as in a range of other problem domains (Turner and Sanders 2006)- and, indeed, are similar to those in any adoption of innovation (Rogers 2003). Over the last 20 years, several commentators have described barriers to implementing evidence-based innovations in mental health services (Corrigan et al. 1992; Deane et al. 2006; Kavanagh et al. 1993). The aim of the current chapter is to present a cognitive behavioural conceptualisation of problems and potential solutions for dissemination of LI CBT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many people with severe mental illness (SMI) such as schizophrenia, whose psychotic symptoms are effectively managed, continue to experience significant functional problems. This chapter argues that low intensity (LI) cognitive behaviour therapy (CBT; e.g. for depression, anxiety, or other issues) is applicable to these clients, and that LI CBT can be consistent with long-term case management. However, adjustments to LI CBT strategies are often necessary and boundaries between LI CBT and high intensity (HI) CBT (with more extensive practitioner contact and complexity) may become blurred. Our focus is on LI CBT's self-management emphasis, its restricted content and segment length, and potential use after limited training. In addition to exploring these issues, it draws on the authors' Collaborative Recovery (CR; Oades et al. 2005) and 'Start Over and Survive' programs (Kavanagh et al. 2004) as examples. ----- ----- Evidence for the effectiveness of LI CBT with severe mental illness is often embedded within multicomponent programs. For example, goal setting and therapeutic homework are common components of such programs, but they can also be used as discrete LI CBT interventions. A review of 40 randomised controlled trials involving recipients with schizophrenia or other sever mental illnesses has identified key components of illness management programs (Mueser et al. 2002). However, it is relatively rare for specific components of these complex interventions to be assessed in isolation. Given these constraints, the evidence for specific LI CBT interventions with severe mental ilnness is relatively limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While the emission rate of ultrafine particles has been measured and quantified, there is very little information on the emission rates of ions and charged particles from laser printers. This paper describes a methodology that can be adopted for measuring the surface charge density on printed paper and the ion and charged particle emissions during operation of a high-emitting laser printer and shows how emission rates of ultrafine particles, ions and charged particles may be quantified using a controlled experiment within a closed chamber.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: (1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running (-10% gradient) at 60% VO2max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E(2), leukotriene B(4) and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P<0.05) after all three trials. Plasma prostaglandin E(2) concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B(4) did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher (P<0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing prevalence of obesity in society has been associated with a number of atherogenic risk factors such as insulin resistance. Aerobic training is often recommended as a strategy to induce weight loss, with a greater impact of high-intensity levels on cardiovascular function and insulin sensitivity, and a greater impact of moderate-intensity levels on fat oxidation. Anaerobic high-intensity (supramaximal) interval training has been advocated to improve cardiovascular function, insulin sensitivity and fat oxidation. However, obese individuals tend to have a lower tolerance of high-intensity exercise due to discomfort. Furthermore, some obese individuals may compensate for the increased energy expenditure by eating more and/or becoming less active. Recently, both moderate- and high-intensity aerobic interval training have been advocated as alternative approaches. However, it is still uncertain as to which approach is more effective in terms of increasing fat oxidation given the issues with levels of fitness and motivation, and compensatory behaviours. Accordingly, the objectives of this thesis were to compare the influence of moderate- and high-intensity interval training on fat oxidation and eating behaviour in overweight/obese men. Two exercise interventions were undertaken by 10-12 overweight/obese men to compare their responses to study variables, including fat oxidation and eating behaviour during moderate- and high-intensity interval training (MIIT and HIIT). The acute training intervention was a methodological study designed to examine the validity of using exercise intensity from the graded exercise test (GXT) - which measured the intensity that elicits maximal fat oxidation (FATmax) - to prescribe interval training during 30-min MIIT. The 30-min MIIT session involved 5-min repetitions of workloads 20% below and 20% above the FATmax. The acute intervention was extended to involve HIIT in a cross-over design to compare the influence of MIIT and HIIT on eating behaviour using subjective appetite sensation and food preference through the liking and wanting test. The HIIT consisted of 15-sec interval training at 85 %VO2peak interspersed by 15-sec unloaded recovery, with a total mechanical work equal to MIIT. The medium term training intervention was a cross-over 4-week (12 sessions) MIIT and HIIT exercise training with a 6-week detraining washout period. The MIIT sessions consisted of 5-min cycling stages at ±20% of mechanical work at 45 %VO2peak, and the HIIT sessions consisted of repetitive 30-sec work at 90 %VO2peak and 30-sec interval rests, during identical exercise sessions of between 30 and 45 mins. Assessments included a constant-load test (45 %VO2peak for 45 mins) followed by 60-min recovery at baseline and the end of 4-week training, to determine fat oxidation rate. Participants’ responses to exercise were measured using blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) and were measured during the constant-load test and in the first intervention training session of every week during training. Eating behaviour responses were assessed by measuring subjective appetite sensations, liking and wanting and ad libitum energy intake. Results of the acute intervention showed that FATmax is a valid method to estimate VO2 and BLa, but is not valid to estimate HR and RPE in the MIIT session. While the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax (0.16 ±0.09 and 0.14 ±0.08 g/min, respectively), fat oxidation was significantly higher at minute 25 of MIIT (P≤0.01). In addition, there was no significant difference between MIIT and HIIT in the rate of appetite sensations after exercise, but there was a tendency towards a lower rate of hunger after HIIT. Different intensities of interval exercise also did not affect explicit liking or implicit wanting. Results of the medium-term intervention indicated that current interval training levels did not affect body composition, fasting insulin and fasting glucose. Maximal aerobic capacity significantly increased (P≤0.01) (2.8 and 7.0% after MIIT and HIIT respectively) during GXT, and fat oxidation significantly increased (P≤0.01) (96 and 43% after MIIT and HIIT respectively) during the acute constant-load exercise test. RPE significantly decreased after HIIT greater than MIIT (P≤0.05), and the decrease in BLa was greater during the constant-load test after HIIT than MIIT, but this difference did not reach statistical significance (P=0.09). In addition, following constant-load exercise, exercise-induced hunger and desire to eat decreased after HIIT greater than MIIT but were not significant (p value for desire to eat was 0.07). Exercise-induced liking of high-fat sweet (HFSW) and high-fat non-sweet (HFNS) foods increased after MIIT and decreased after HIIT (p value for HFNS was 0.09). The intervention explained 12.4% of the change in fat intake (p = 0.07). This research is significant in that it confirmed two points in the acute study. While the rate of fat oxidation increased during MIIT, the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax. In addition, manipulating the intensity of acute interval exercise did not affect appetite sensations and liking and wanting. In the medium-term intervention, constant-load exercise-induced fat oxidation significantly increased after interval training, independent of exercise intensity. In addition, desire to eat, explicit liking for HFNS and fat intake collectively confirmed that MIIT is accompanied by a greater compensation of eating behaviour than HIIT. Findings from this research will assist in developing exercise strategies to provide obese men with various training options. In addition, the finding that overweight/obese men expressed a lower RPE and decreased BLa after HIIT compared with MIIT is contrary to the view that obese individuals may not tolerate high-intensity interval training. Therefore, high-intensity interval training can be advocated among the obese adult male population. Future studies may extend this work by using a longer-term intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Random Breath Testing (RBT) is the main drink driving law enforcement tool used throughout Australia. International comparative research considers Australia to have the most successful RBT program compared to other countries in terms of crash reductions (Erke, Goldenbeld, & Vaa, 2009). This success is attributed to the programs high intensity (Erke et al., 2009). Our review of the extant literature suggests that there is no research evidence that indicates an optimal level of alcohol breath testing. That is, we suggest that no research exists to guide policy regarding whether or not there is a point at which alcohol related crashes reach a point of diminishing returns as a result of either saturated or targeted RBT testing. Aims: In this paper we first provide an examination of RBTs and alcohol related crashes across Australian jurisdictions. We then address the question of whether or not an optimal level of random breath testing exists by examining the relationship between the number of RBTs conducted and the occurrence of alcohol-related crashes over time, across all Australian states. Method: To examine the association between RBT rates and alcohol related crashes and to assess whether an optimal ratio of RBT tests per licenced drivers can be determined we draw on three administrative data sources form each jurisdiction. Where possible data collected spans January 1st 2000 to September 30th 2012. The RBT administrative dataset includes the number of Random Breath Tests (RBTs) conducted per month. The traffic crash administrative dataset contains aggregated monthly count of the number of traffic crashes where an individual’s recorded BAC reaches or exceeds 0.05g/ml of alcohol in blood. The licenced driver data were the monthly number of registered licenced drivers spanning January 2000 to December 2011. Results: The data highlights that the Australian story does not reflective of all States and territories. The stable RBT to licenced driver ratio in Queensland (of 1:1) suggests a stable rate of alcohol related crash data of 5.5 per 100,000 licenced drivers. Yet, in South Australia were a relative stable rate of RBT to licenced driver ratio of 1:2 is maintained the rate of alcohol related traffic crashes is substantially less at 3.7 per 100,000. We use joinpoint regression techniques and varying regression models to fit the data and compare the different patterns between jurisdictions. Discussion: The results of this study provide an updated review and evaluation of RBTs conducted in Australia and examines the association between RBTs and alcohol related traffic crashes. We also present an evidence base to guide policy decisions for RBT operations.