968 resultados para HEV B 13
Resumo:
The molecular structure of trans-[PtCl(CCPh)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21, with a= 12.359(3), b= 13.015(3), c= 9.031(2)Å, β= 101.65(2)°, and Z= 2. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.046 for 1 877 diffractometric intensity data. The crystals contain discrete molecules in which the platinum coordination is square planar. The phenylethynyl group is non-linear, with a Pt–CC angle of 163(2)°. Selected bond lengths are Pt–Cl 2.407(5) and Pt–C 1.98(2)Å. The structural trans influences of CCPh, CHCH2, and CH2SiMe3 ligands in platinum(II) complexes are compared; there is only a small dependence on hybridization at the ligating carbon atom.
Resumo:
The molecular structure of trans-[PtCl(CHCH2)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are orthorhombic, space group Pbcn, with a= 10.686(2), b= 13.832(4), c= 16.129(4)Å, and Z= 4. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.044 for 1 420 diffractometric intensity data. The crystals contain discrete molecules in which the platinum co-ordination is square planar. The Pt–Cl bond vector coincides with a crystallographic diad axis about which the atoms of the vinyl group are disordered. Selected bond lengths (Å) are Pt–Cl 2.398(4), Pt–P 2.295(3), and Pt–C 2.03(2). The Pt–CC angle is 127(2)°. From a survey of the available structural data it is concluded that there is little, if any, back donation from platinum to carbon in platinum–alkenyl linkages.
Resumo:
A new iron(II) coordination polymer, [FeCl2(NC7H9)2(N2C12H12)], has been synthesized under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction. This material crystallizes in the monoclinic space group C2/c, with a = 11.2850(6), b = 13.8925(7), c = 17.0988(9) Å and β = 94.300(3)º (Z = 4). The crystal structure consists of neutral zig-zag chains, in which the iron(II) ions are octahedrally coordinated. The infinite polymer chains are packed into a three-dimensional structure through C–H···Cl interactions. Magnetic susceptibility measurements reveal the existence of weak antiferromagnetic interactions between the iron(II) ions. The effective magnetic moment, μ eff = 5.33 μ B , is consistent with a high-spin iron(II) configuration.
Resumo:
A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.
Resumo:
Structural and conformational properties of the molecule bis[isopropoxy(thiocarbonyl)]sulfide, [(CH(3))(2)CHOC(S)](2)S, have been studied by vibrational spectroscopy (IR and Raman) and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets). The crystal and molecular structure of the title compound was determined by X-ray diffraction methods. It crystallizes in the monoclinic C2/c space group with a = 8.4007(4), b = 13.5936(5), c = 10.3648(5) angstrom, beta = 106.024(4)degrees and Z = 4 molecules per unit cell. The molecules are sited on a crystallographic twofold axis passing through the sulphide atom and arranged in layers perpendicular to the b-axis. The solid state IR and Raman spectra of the compound give no sign of any other rotamer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.
Resumo:
The crystal structure of benzoyl-histidine monohydrate (BYLH hereafter), C-13H-12N-3O-3. H2O was determined from three dimensional data of 3012 independent reflections measured on a Enraf-Nonius (CAD4) single crystal diffractometer. The compound crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell dimensions alpha = 7.102(1) angstrom, b = 13.783(3) angstrom, c = 14.160(4) angstrom, V = 1385.92 angstrom-3, F.W. = 277.28, F(000) = 584 Q(calc) = 1.32 g cm-3 and Z = 4.The structure was solved with direct methods. All positional and anisotropic thermal parameters were refined by full-matrix least-squares calculations. The final reliability factor was R = 0.040, while the weighted one was Rw = 0.034. The H atoms found in the difference Fourier map were refined isotropically.The compound consists of a histidine molecule bound to a benzoyl group. There is also a cocrystallized water molecule stabilized through a hydrogen bridge.The 5-membered ring of the histidine has its tautomeric form, after the transfer of the H atom from the N(delta) to the N(epsilon) atom of the ring. There is an sp2 conformation around C6 while the conformation around C3 is that of sp3. The histidine ring forms with the benzene ring a dihedral angle of 109.8(1)-degree.All angle values and bond distances agree very well with the expected values in the literature.
Resumo:
C5H9BF3KS2, triclinic, P (1) over bar (no. 2), a = 11.9238(5) angstrom, b = 13.6060(5) angstrom, c = 14.0280(3) angstrom, alpha = 114.995(2)degrees, beta = 92.035(2)degrees, gamma = 92.390(2)degrees, V = 2057.4 angstrom(3), Z = 8, R-gt(F) = 0.049, wR(ref)(F-2) = 0.117, T = 296 K.
Resumo:
(1) C11H17IN2STe, Mr = 463.83, P2(1)/n, a 7.6582(8), b = 13.8008(9), c = 15.026(3) angstrom, beta = 96.233(12)degrees, Z = 4, R-1 = 0.0318. (2) C15H19IN2STe, Mr = 513.88, P2(1)/n, a = 8.434(5), b = 11.697(5), c = 18.472(5) angstrom, beta = 98.556(5)degrees, Z = 4, R-1 = 0.0236. The synthesis of the aryltellurenyl N,N',-tetramethylthiourea (tmtu) iodide has been performed by ligand exchange with potassium iodide and the corresponding aryltellurenyl(tmtu) bromide. In both structures the tellurium atom is primarily three-coordinated, being bonded to a carbon atom of the organic ring and, in directions nearly perpendicular to the Te-C bond, to one tmtu sulfur atom and one iodine. In addition there are Te...secondary bonds, joining the molecules in centrosymmetric dimers, which in turn are joined through C-H...1 and C-H... S interactions, in (1) and (2), respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
C28H20N4Pd2S2, monoclinic, P12(1)/c1 (No. 14), a = 11.325(1) Angstrom, b = 13.530(1) Angstrom, c = 17.925(1) Angstrom, beta = 106.23(1)degrees, V = 2637.1 Angstrom(3), Z = 4, R-gt(F) = 0.052, wR(ref)(F-2) = 0.129, T = 293 K.
Resumo:
The synthesis and crystal structure of two complexes resulting from interaction between NiBr2 and triphenylarsine oxide (Ph3AsO) is described. Green and orange complexes can be obtained from the blue, probably tetrahedral complex [NiBr2(Ph3AsO)2], depending on the solvents used for recrystallization. NiBr2·4[(C6H5)3AsO]·8H2O (green): M = 1650.2, P21/c, a = 13.731(2), b = 16.267(3), c = 17.647(2) Å, β = 112.04(1)°, V = 3651.4 Å3, Z = 2, Dx = 1.501 g cm-3, CuKα, λ = 1.54184 Å, μ = 38.67 cm-1, R = 0.039, 3741 unique reflections, 3203 with I > 3σ(I). NiBr2·4[(C6H5)3AsO]·3|2(C6H5CH3)·H2O (orange): M = 1663.7, P1, a = 12.647(8), b = 13.953(5), c = 22.853(6) Å, α = 90.91(3), β = 96.70(4), γ = 111.16(4)°, V = 3727.4 Å3, Z = 2, Dx = 1.482 g cm-3, MoKα, λ = 0.71073 Å, μ = 30.48 cm-1, R = 0.087, 8600 unique reflections, 4293 with I > 3σ(I). In the green complex the Ni(II) ion is sited on a center of symmetry and is octahedrally coordinated to six water molecules, hydrogen bonded to the Ph3AsO molecules and to the bromide anions forming a second coordination sphere in a nearly octahedral arrangement. In the orange complex the cation is pentacoordinated with the four oxygen atoms of the Ph3AsO ligands forming the basis of a tetragonal pyramid and with one Br- anion in the apical position. The absorption spectrum of the orange complex is compared with the spectra of other Ni(II) square pyramidal complexes described in the literature. © 1984.
Resumo:
The preparation and characterization of (Ph3AsOH)2[CuBr4] and [Cu(Ph3AsO)4][CuBr4] are reported (Ph3AsO = triphenylarsine oxide). Crystallographic analysis of the monoclinic crystals of (Ph3AsOH)2[CuBr4] (space group C2/c, a = 17.569 (3) Å, b = 13.090 (2) Å, c = 16.933 (2) Å, and β = 105.64 (2)°, R = 0.055 and Rw = 0.057) revealed the presence of compressed [CuBr4]2- tetrahedra of C2 symmetry with Cu-Br distances of 2.340 (1) and 2.437 (1) Å and trans-Br-Cu-Br angles of 139.2 (1) and 122.4 (1)°. The oxonium cations hydrogen bond to the bromine atoms involved in the longer Cu-Br bonds and the smaller trans-Br-Cu-Br angle. Single-crystal electronic and EPR spectra are interpreted in terms of the observed [CuBr4]2- geometry. Analysis of the electronic and EPR spectra of [Cu(Ph3AsO)4][CuBr4] led to the postulation of the presence of planar [Cu(Ph3AsO)4]2+ cations and distorted tetrahedral [CuBr4]2- anions. © 1992 American Chemical Society.
Resumo:
Fourteen complexes in the series [RuCl2(CO)(L)(PPh3)2] (where L = N-heterocycles) have been prepared and characterized by IR and NMR spectroscopies, and cyclic voltammetry. A good correlation is found between observed and calculated electrochemical potentials; E1/2 vs pKa or (Gp, σm for a series of similar ligands. It is now reported that the carbonyl stretching frequency, νCO, and the 13C and 31P NMR signals do not correlate well with any of the physico-chemical parameters used (E1/2, Taft's and Hammett's parameters). This behaviour is probably due to the characteristics of the Ru(II) species, which does not transmit the steric and electron donor/acceptor properties of the ligands to the carbonyl group, or because the measurements are not able to detect the effect induced by the changes in the ligand L. Indeed, good correlations are obtained when the measurements directly involve the metal centre, as is the case in the E1/2 measurements. Crystals of o[RuCl2(CO)(4-pic)(PPh3)2] are monoclinic, space group P21/n, a = 12.019(2), b = 13.825(3) and c = 22.253(3) . The structure was solved by the Patterson method and was refined by full-matrix least-squares procedure to R = 0.054 and Rw = 0.055, for 2114 reflections with I > 3σ(I). For L = 2-acetylpyridine and 2-methylimidazole, complexes with formulae [RuCl2(CO)(L)(PPh3)] · L and [RuCl2(CO)(L)2 (PPh3)], respectively, were obtained. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
CONTEXT: Epidemiological studies have demonstrated higher frequencies of the O blood group and the non-secretor phenotype of ABH antigens among patients suffering from peptic ulcers. Since Helicobacter pylori has been established as the main etiological factor in this disease, controversies about the associations of the ABO and Lewis blood group phenotypes and secretor and non-secretor phenotypes in relation to susceptibility towards infection by this bacillus have been presented. OBJECTIVE: To verify the frequencies of ABO, Lewis blood group phenotypes, secretor and non-secretor phenotypes in patients infected or uninfected by H. pylori. DESIGN: Cross-sectional study. SETTING: Outpatient clinic. PARTICIPANTS: One hundred and twenty patients with dyspeptic symptoms who underwent endoscopy. MAIN MEASUREMENTS: ABO and Lewis blood group phenotypes were determined by a standard hemagglutination test and the secretor and non-secretor phenotypes were evaluated by saliva samples using the inhibitor hemagglutination test. RESULTS: The diagnosis of infection, made via breath and urea tests and confirmed using polymerase chain reaction (PCR) in gastric biopsy fragments, showed the presence of H. pylori in 61.7% of the patients and absence in 38.3%. The differences between the frequencies of the ABO blood group phenotypes among infected (A 27.0%; B 12.2%; AB 4.0% and O 56.8%) and uninfected patients (A 58.7%; B 13.0%; AB 4.3% and O 24.0%) were significant. The Lewis blood type, secretor and non-secretor phenotypes showed homogeneous distribution between the groups of patients analyzed. CONCLUSIONS: Our results suggest that the infection of H. pylori can be related to ABO blood groups but not to the Lewis blood group nor to secretor and non-secretor phenotypes. Copyright©2002, Associação Paulista de Medicina.