946 resultados para HEART ARREST, INDUCED
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this investigation was to determine whether changes in myosin heavy chain (MHC) expression and atrophy in rat skeletal muscle are observed during transition from cardiac hypertrophy to chronic heart failure (CHF) induced by aortic stenosis (AS). AS and control animals were studied 12 and 18 weeks after surgery and when overt CHF had developed in AS animals, 28 weeks after the surgery. The following parameters were studied in the soleus muscle: muscle atrophy index (soleus weight/body weight), muscle fibre diameter and frequency and MHC expression. AS animals presented decreases in both MHC1 and type I fibres and increases in both MHC2a and type IIa fibres during late cardiac hypertrophy and CHF. Type IIa fibre atrophy occurred during CHF. In conclusion, our data demonstrate that skeletal muscle phenotype changes occur in both late cardiac hypertrophy and heart failure; this suggests that attention should be given to the fact that skeletal muscle phenotype changes occur prior to overt heart failure symptoms.
Resumo:
Cardiac or ventricular remodeling is characterized by molecular, cellular, and interstitial alterations that lead to changes in heart size, mass, geometry and function in response to a given insult. Currently, tobacco smoke exposure is recognized as one of these insults. Indeed, tobacco smoke exposure induces the enlargement of the left-sided cardiac chambers, myocardial hypertrophy, and ventricular dysfunction. Potential mechanisms for these alterations include hemodynamic and neurohormonal changes, oxidative stress, inflammation, nitric oxide bioavailability, matrix metalloproteinases and mitogen-activated protein kinase activation. This review will focus on the concepts, relevance, and potential mechanisms of cardiac remodeling induced by tobacco smoke.
Resumo:
Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer.
Resumo:
Comorbidity between mood disorders and cardiovascular disease has been described extensively. However, available antidepressants can have cardiovascular side effects. Treatment with selective inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant effects, but whether the antidepressant-like effects of these drugs are followed by cardiovascular changes has not been previously investigated. Here, we tested in male rats exposed to chronic variable stress (CVS) the hypothesis that nNOS blockers are advantageous compared with conventional antidepressants in terms of cardiovascular side effects. We compared the effects of chronic treatment with the preferential nNOS inhibitor 7-nitroindazole (7-NI) with those evoked by the conventional antidepressant fluoxetine on alterations that are considered as markers of depression (immobility in the forced swimming test, FST, decreased body weight gain and increased plasma corticosterone concentration) and cardiovascular changes caused by CVS. Rats were exposed to a 14-day CVS protocol, while being concurrently treated daily with either 7-NI (30 mg/kg) or fluoxetine (10 mg/kg). Fluoxetine and 7-NI prevented the increase in immobility in the FST induced by CVS and reduced plasma corticosterone concentration in stressed rats. Both these treatments also prevented the CVS-evoked reduction of the depressor response to vasodilator agents and baroreflex changes. Fluoxetine and 7-NI-induced cardiovascular changes independent of stress exposure, including cardiac autonomic imbalance, increased intrinsic heart rate and vascular sympathetic modulation, a reduction of the pressor response to vasoconstrictor agents, and impairment of baroreflex activity. Altogether, these findings provide evidence that fluoxetine and 7-NI have similar effects on the depression-like state induced by CVS and on cardiovascular function.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background-It remains uncertain whether acetylcysteine prevents contrast-induced acute kidney injury. Methods and Results-We randomly assigned 2308 patients undergoing an intravascular angiographic procedure with at least 1 risk factor for contrast-induced acute kidney injury (age >70 years, renal failure, diabetes mellitus, heart failure, or hypotension) to acetylcysteine 1200 mg or placebo. The study drugs were administered orally twice daily for 2 doses before and 2 doses after the procedure. The allocation was concealed (central Web-based randomization). All analysis followed the intention-to-treat principle. The incidence of contrast-induced acute kidney injury (primary end point) was 12.7% in the acetylcysteine group and 12.7% in the control group (relative risk, 1.00; 95% confidence interval, 0.81 to 1.25; P = 0.97). A combined end point of mortality or need for dialysis at 30 days was also similar in both groups (2.2% and 2.3%, respectively; hazard ratio, 0.97; 95% confidence interval, 0.56 to 1.69; P = 0.92). Consistent effects were observed in all subgroups analyzed, including those with renal impairment. Conclusions-In this large randomized trial, we found that acetylcysteine does not reduce the risk of contrast-induced acute kidney injury or other clinically relevant outcomes in at-risk patients undergoing coronary and peripheral vascular angiography.
Resumo:
Objective The objective of this study was to assess the acute effect of intranasally administered oxytocin (OT) on subjective states, cardiovascular, and endocrine parameters in healthy volunteers who inhaled 7.5% CO2. Methods Forty-five subjects were allocated into three matched groups of subjects who received 24?international units (IU) of OT, 2?mg of lorazepam (LZP), or placebo (PL). The challenge consisted of medical air inhalation for 20?min, 10?min of rest, and CO2 7.5% inhalation for 20?min. Subjective effects were evaluated by self-assessment scales; heart rate, blood pressure, skin conductance, and salivary cortisol were also measured. Assessments were performed at four time points: (i) baseline (-15?min); (ii) post-air inhalation (90?min); (iii) post-CO2 inhalation (120?min), and (iv) post-test (160?min). Results CO2 inhalation significantly increased the anxiety score in the PL group compared with the post-air measurement but not in the OT or LZP groups. The LZP reduced anxiety after medical air inhalation. Other parameters evaluated were not affected by OT. Conclusion OT, as well as LZP, prevented CO2-induced anxiety, suggesting that this hormone has anxiolytic properties. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 +/- 2 mmHg and 375 +/- 20 dyn s cm(-5) m(-2), respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin-angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.
Resumo:
The current study aimed to determine the role of oxidants in cardiac and pulmonary toxicities induced by chronic exposure to ROFA. Eighty Wistar rats were divided into four groups: G1 (10 mu L Saline), G2 (ROFA 50 mu g/10 mu L), G3 (ROFA 250 mu g/10 mu L) and G4 (ROFA 500 mu g/10 mu L). Rats received ROFA by nasotropic instillation for 90 days. After that, they were euthanized and bronchoalveolar lavage (BAL) was performed for total count of leukocytes, protein and lactate dehydrogenase (LDH) determinations. Lungs and heart were removed to measure lipid peroxidation (MDA), catalase (CAT) and superoxide dismutase (SOD) activity. BAL presented an increase in leukocytes count in G4 in comparison to the Saline group (p = 0.019). In lung, MDA level was not modified by ROFA, while CAT was higher in G4 when compared to all other groups (p = 0.013). In heart, G4 presented an increase in MDA (p = 0.016) and CAT (p = 0.027) levels in comparison to G1. The present study demonstrated cardiopulmonary oxidative changes after a chronic ROFA exposure. More specifically, the heart tissue seems to be more susceptible to oxidative effects of long-term exposure to ROFA than the lung.
Resumo:
Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Resumo:
Inoue BH, dos Santos L, Pessoa TD, Antonio EL, Pacheco BPM, Savignano FA, Carraro-Lacroix LR, Tucci PJF, Malnic G, Girardi ACC. Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 302: R166-R174, 2012. First published October 26, 2011; doi:10.1152/ajpregu.00127.2011.-Heart failure (HF) is associated with a reduced effective circulating volume that drives sodium and water retention and extracellular volume expansion. We therefore hypothesized that Na(+)/H(+) exchanger isoform 3 (NHE3), the major apical transcellular pathway for sodium reabsorption in the proximal tubule, is upregulated in an experimental model of HF. HF was induced in male rats by left ventricle radiofrequency ablation. Sham-operated rats (sham) were used as controls. At 6 wk after surgery, HF rats exhibited cardiac dysfunction with a dramatic increase in left ventricular end-diastolic pressure. By means of stationary in vivo microperfusion and pH-dependent sodium uptake, we demonstrated that NHE3 transport activity was significantly higher in the proximal tubule of HF compared with sham rats. Increased NHE3 activity was paralleled by increased renal cortical NHE3 expression at both protein and mRNA levels. In addition, the baseline PKA-dependent NHE3 phosphorylation at serine 552 was reduced in renal cortical membranes of rats with HF. Collectively, these results suggest that NHE3 is upregulated in the proximal tubule of HF rats by transcriptional, translational, and posttranslational mechanisms. Enhanced NHE3-mediated sodium reabsorption in the proximal tubule may contribute to extracellular volume expansion and edema, the hallmark feature of HF. Moreover, our study emphasizes the importance of undertaking a cardiorenal approach to contain progression of cardiac disease.
Resumo:
Introduction. Patients with terminal heart failure have increased more than the available organs leading to a high mortality rate on the waiting list. Use of Marginal and expanded criteria donors has increased due to the heart shortage. Objective. We analyzed all heart transplantations (HTx) in Sao Paulo state over 8 years for donor profile and recipient risk factors. Method. This multi-institutional review collected HTx data from all institutions in the state of Sao Paulo, Brazil. From 2002 to 2008 (6 years), only 512 (28.8%) of 1777 available heart donors were accepted for transplantation. All medical records were analyzed retrospectively; none of the used donors was excluded, even those considered to be nonstandard. Results. The hospital mortality rate was 27.9% (n = 143) and the average follow-up time was 29.4 +/- 28.4 months. The survival rate was 55.5% (n = 285) at 6 years after HTx. Univariate analysis showed the following factors to impact survival: age (P = .0004), arterial hypertension (P = .4620), norepinephrine (P = .0450), cardiac arrest (P = .8500), diabetes mellitus (P = .5120), infection (P = .1470), CKMB (creatine kinase MB) (P = .8694), creatinine (P = .7225), and Na+ (P = .3273). On multivariate analysis, only age showed significance; logistic regression showed a significant cut-off at 40 years: organs from donors older than 40 years showed a lower late survival rates (P = .0032). Conclusions. Donor age older than 40 years represents an important risk factor for survival after HTx. Neither donor gender nor norepinephrine use negatively affected early survival.
Resumo:
Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. In fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The paraventricular nucleus of hypothalamus (PVN) is a well known site of integration for autonomic and cardiovascular responses, and the glutamate neurotransmitter plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after ionotropic glutamate receptor inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After exercise training protocol, adult male Wistar rats, instrumented with guide cannulae to PVN and artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, physical training induced a resting bradycardia (S: 379 +/- 3, ST: 349 +/- 2 bpm, P<0.05) and promoted adaptations in HRV characterized by an increase of HF in normalized values and a decrease of LF in absolute and normalized units compared with the sedentary group. Microinjection of kynurenic acid (KYNA) in the PVN of sedentary and trained rats promoted decreases in MAP and HR, but the decrease in HR was smaller in the trained animals (Delta HRS: -48 +/- 7, ST: -28 +/- 4 bpm, P<0.05). Furthermore, the differences in baseline parameters of pulse interval, found between sedentary and trained animals, disappeared after KYNA microinjection in the PVN. Our data suggest that the cardiovascular and autonomic adaptations to the heart induced by exercise training may involve glutamatergic mechanisms in the PVN. (C) 2012 Elsevier B.V. All rights reserved.