951 resultados para Guided Tissue Regeneration
Resumo:
Objectives/Hypothesis. Hepatocyte growth factor (HGF) is a multifunctional polypeptide that plays various roles in embryogenesis and tissue regeneration and exhibits marked antifibrotic activity. The present study sought to assess the effects of HGF injection and reinjection coinciding with its peak of activity on collagen density, vessel density, inflammatory reaction in the lamina propria, and mean epithelial thickness in the injured rabbit vocal fold. Study Design. Prospective, controlled, experimental animal study. Methods. Fourteen rabbits were subdivided into two groups and underwent injury of the vocal folds. Immediately after injury, animals in group 1 received HGF injections into the right vocal fold (RVF), whereas those in group 2 received bilateral HGF injections and a single reinjection into the RVF 10 days after the first, to coincide with the peak of HGF activity. The left vocal folds (LVFs) served as controls in both groups. Histological assessment of laryngeal specimens was performed at 30 and 40 days, respectively. Results. In both groups, collagen density was lower in the right (treated) vocal folds than in the left (control) folds (P = 0.018). Vessel density was higher in the RVFs in group 2 (P = 0.018). Differences were found in mean epithelial thickness and inflammatory reaction in the lamina propria but did not reach statistical significance. Conclusions. In the scarred rabbit vocal fold, HGF injection is associated with decreased collagen density in the lamina propria, whereas reinjection after 10 days produces decreased collagen density and higher vessel density.
Resumo:
Diferentes fatores devem ser considerados nos casos de substituição de restaurações em dentes anteriores, tais como tratamento periodontal e tipo de material utilizado. Nessas situações, uma abordagem multidisciplinar é fundamental. Pacientes com resinas antigas próximas à margem gengivaI normalmente apresentam inflamação do tecido nessa região; por esse motivo, uma adequação prévia é fundamental para o sucesso do tratamento restaurador. Além disso, cuidados na substituição dessas restaurações devem ser considerados pelo profissional e pelo paciente. Os laminados cerâmicos têm sido amplamente utilizados em dentes anteriores; no entanto, esse tratamento deve ser indicado em situações específicas, de tal forma que seja o mais conservador possível. Assim, o presente trabalho demonstra, por meio de um caso clínico, a associação da Periodontia e Dentística na substituição de resinas compostas por laminados cerâmicos, de forma conservadora.
Resumo:
Since its discovery, myostatin (MSTN) has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.
Resumo:
The use of scaffolds for Tissue Engineering (TE) is increasing due to their efficacy in helping the body rebuild damaged or diseased tissue. Hydroxyapatite (HA) is the most suitable bioactive ceramic to be used in orthopaedic reconstruction since it replicates the mineral component of the hard tissues, and it has therefore excellent biocompatibility properties. The temporal and spatial control of the tissue regeneration process is the limit to be overcome in order to treat large bone and osteochondral defects. In this thesis we describe the realization of a magnetic scaffolds able to attract and take up growth factors or other bio-agents in vivo via a driving magnetic force. This concept involves the use of magnetic nanoparticles (MNP) functionalized with selected growth factors or stem cells. These functionalized MNP act as shuttles transporting the bio-agents towards and inside the scaffold under the effect of the magnetic field, enhancing the control of tissue regeneration processes. This scaffold can be imagined as a fixed “station” that provides a unique possibility to adjust the scaffold activity to the specific needs of the healing tissue. Synthetic bone graft substitutes, made of collagen or biomineralized collagen (i.e. biomimetic Hydroxyapatite/collagen composites) were used as starting materials for the fabrication of magnetic scaffolds. These materials are routinely used clinically to replace damaged or diseased cartilaginous or bone tissue. Our magnetization technique is based on a dip-coating process consisting in the infilling of biologically inspired porous scaffolds with aqueous biocompatible ferrofluids’ suspensions. In this technique, the specific interconnected porosity of the scaffolds allows the ferrofluids to be drawn inside the structure by capillarity. A subsequent freeze-drying process allows the solvent elimination while keeping very nearly the original shape and porosity of the scaffolds. The remaining magnetic nanoparticles, which are trapped in the structure, lead to the magnetization of the HA/Collagen scaffold. We demonstrate here the possibility to magnetize commercially available scaffolds up to magnetization values that are used in drug delivery processes. The preliminary biocompatibility test showed that the investigated scaffolds provide a suitable micro-environment for cells. The biocompatibility of scaffold facilitates the growth and proliferation of osteogenic cells.
Resumo:
Lo scheletro è un tessuto dinamico, capace di adattarsi alle richieste funzionali grazie a fenomeni di rimodellamento ed alla peculiare proprietà rigenerativa. Tali processi avvengono attraverso l’azione coordinata di osteoclasti ed osteoblasti. Queste popolazioni cellulari cooperano allo scopo di mantenere l’ equilibrio indispensabile per garantire l’omeostasi dello scheletro. La perdita di tale equilibrio può portare ad una diminuzione della massa ossea e, ad una maggiore suscettibilità alle fratture, come avviene nel caso dell’osteoporosi. E’ noto che, nella fisiopatologia dell’osso, un ruolo cruciale è svolto da fattori endocrini e paracrini. Dati recenti suggeriscono che il rimodellamento osseo potrebbe essere influenzato dal sistema nervoso. L’ipotesi è supportata dalla presenza, nelle vicinanze dell’osso, di fibre nervose sensoriali responsabili del rilascio di alcuni neuro peptidi, tra i quali ricordiamo la sostanza P. Inoltre in modelli animali è stato dimostrato il diretto coinvolgimento del sistema nervoso nel mantenimento dell’omeostasi ossea, infatti ratti sottoposti a denervazione hanno mostrato una perdita dell’equilibrio esistente tra osteoblasti ed osteoclasti. Per tali ragioni negli ultimi anni si è andata intensificando la ricerca in questo campo cercando di comprendere il ruolo dei neuropeptidi nel processo di differenziamento dei precursori mesenchimali in senso osteogenico. Le cellule stromali mesenchimali adulte sono indifferenziate multipotenti che risiedono in maniera predominante nel midollo osseo, ma che possono anche essere isolate da tessuto adiposo, cordone ombelicale e polpa dentale. In questi distretti le MSC sono in uno stato non proliferativo fino a quando non sono richieste per processi locali di riparo e rigenerazione tessutale. MSC, opportunamente stimolate, possono differenziare in diversi tipi di tessuto connettivo quali, tessuto osseo, cartilagineo ed adiposo. L’attività di ricerca è stata finalizzata all’ottimizzazione di un protocollo di espansione ex vivo ed alla valutazione dell’influenza della sostanza P, neuropeptide presente a livello delle terminazioni sensoriali nelle vicinanze dell’osso, nel processo di commissionamento osteogenico.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
Endothelial progenitor cells (EPC) play a fundamental role in tissue regeneration and vascular repair. Current research suggests that EPC are more resistant to oxidative stress as compared to differentiated endothelial cells. Here we hypothesized that EPC not only possess the ability to protect themselves against oxidative stress but also confer this protection upon differentiated endothelial cells by release of paracrine factors. To test this hypothesis, HUVEC incubated with conditioned medium obtained from early EPC cultures (EPC-CM) were exposed to H2O2 to assess the accumulation of intracellular ROS, extent of apoptosis and endothelial cell functionality. Under oxidative stress conditions HUVEC treated with EPC-CM exhibited substantially lower levels of intracellular oxidative stress (0.2+/-0.02 vs. 0.4+/-0.03 relative fluorescence units, p<0.05) compared to control medium. Moreover, the incubation with EPC-CM elevated the expression level of antioxidant enzymes in HUVEC (catalase: 2.6+/-0.4; copper/zinc superoxide dismutase (Cu/ZnSOD): 1.6+/-0.1; manganese superoxide dismutase (MnSOD): 1.4+/-0.1-fold increase compared to control, all p<0.05). Furthermore, EPC-CM had the distinct potential to reverse the functional impairment of HUVEC as measured by their capability to form tubular structures in vitro. Finally, incubation of HUVEC with EPC-CM resulted in a significant reduction of apoptosis (0.34+/-0.01 vs. 1.52+/-0.12 relative fluorescence units, p<0.01) accompanied by an increased expression ratio of the anti/pro-apoptotic factors Bcl-2/Bax to 2.9+/-0.7-fold (compared to control, p<0.05). Most importantly, neutralization of selected cytokines such as VEGF, HGF, IL-8 and MMP-9 did not significantly reverse the cyto-protective effect of EPC-CM (p>0.05), suggesting that soluble factors secreted by EPC, possibly via broad synergistic actions, exert strong cyto-protective properties on differentiated endothelium through modulation of intracellular antioxidant defensive mechanisms and pro-survival signals.
Resumo:
In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.
Resumo:
Few biopharmaceutical preparations developed from biologicals are available for tissue regeneration and scar management. When developing biological treatments with cellular therapy, selection of cell types and establishment of consistent cell banks are crucial steps in whole-cell bioprocessing. Various cell types have been used in treatment of wounds to reduce scar to date including autolog and allogenic skin cells, platelets, placenta, and amniotic extracts. Experience with fetal cells show that they may provide an interesting cell choice due to facility of outscaling and known properties for wound healing without scar. Differential gene profiling has helped to point to potential indicators of repair which include cell adhesion, extracellular matrix, cytokines, growth factors, and development. Safety has been evidenced in Phase I and II clinical fetal cell use for burn and wound treatments with different cell delivery systems. We present herein that fetal cells present technical and therapeutic advantages compared to other cell types for effective cell-based therapy for wound and scar management.
Resumo:
Purpose:To determine the potential of minimally invasive postmortem computed tomographic (CT) angiography combined with image-guided tissue biopsy of the myocardium and lungs in decedents who were thought to have died of acute chest disease and to compare this method with conventional autopsy as the reference standard.Materials and Methods:The responsible justice department and ethics committee approved this study. Twenty corpses (four female corpses and 16 male corpses; age range, 15-80 years), all of whom were reported to have had antemortem acute chest pain, were imaged with postmortem whole-body CT angiography and underwent standardized image-guided biopsy. The standard included three biopsies of the myocardium and a single biopsy of bilateral central lung tissue. Additional biopsies of pulmonary clots for differentiation of pulmonary embolism and postmortem organized thrombus were performed after initial analysis of the cross-sectional images. Subsequent traditional autopsy with sampling of histologic specimens was performed in all cases. Thereafter, conventional histologic and autopsy reports were compared with postmortem CT angiography and CT-guided biopsy findings. A Cohen k coefficient analysis was performed to explore the effect of the clustered nature of the data.Results:In 19 of the 20 cadavers, findings at postmortem CT angiography in combination with CT-guided biopsy validated the cause of death found at traditional autopsy. In one cadaver, early myocardial infarction of the papillary muscles had been missed. The Cohen κ coefficient was 0.94. There were four instances of pulmonary embolism, three aortic dissections (Stanford type A), three myocardial infarctions, three instances of fresh coronary thrombosis, three cases of obstructive coronary artery disease, one ruptured ulcer of the ascending aorta, one ruptured aneurysm of the right subclavian artery, one case of myocarditis, and one pulmonary malignancy with pulmonary artery erosion. In seven of 20 cadavers, CT-guided biopsy provided additional histopathologic information that substantiated the final diagnosis of the cause of death.Conclusion:Postmortem CT angiography combined with image-guided biopsy, because of their minimally invasive nature, have a potential role in the detection of the cause of death after acute chest pain.© RSNA, 2012.
Resumo:
Bioresorbable collagen membranes are routinely utilized in guided bone regeneration to selectively direct the growth and repopulation of bone cells in areas of insufficient volume. However, the exact nature by which alveolar osteoblasts react to barrier membranes as well as the effects following the addition of growth factors to the membranes are still poorly understood. The objective of the present study was therefore to investigate the effect of a bioresorbable collagen membrane soak-loaded in growth factors bone morphogenetic protein 2 (BMP2) or transforming growth factor β1 (TGFβ1) on osteoblast adhesion, proliferation, and differentiation.
Resumo:
Cardiosphere-derived cells (CDCs) are an attractive cell type for tissue regeneration, and autologous CDCs are being tested clinically. However, autologous therapy necessitates patient-specific tissue harvesting and cell processing, with delays to therapy and possible variations in cell potency. The use of allogeneic CDCs, if safe and effective, would obviate such limitations. We compared syngeneic and allogeneic CDC transplantation in rats from immunologically-mismatched inbred strains.
Resumo:
PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.
Resumo:
The purpose of this practical manual is to describe and illustrate each step of the basic surgical procedures involved in the placement of implants in qualified patients. To that end, each procedure is briefly but lucidly described; carefully illustrated in a series of drawings of the techniques and instrumentation used; and reinforced through clinical photographs, including radiographic and postoperative follow-up views. In addition to the basic implant surgical principles, evidence-based indications and procedures for guided bone regeneration in apical fenestration and crestal dehiscence defects, and for simultaneous sinus floor elevation via the lateral window and osteotome techniques are featured.
Resumo:
OBJECTIVES: To compare the clinical outcomes of standard, cylindrical, screw-shaped to novel tapered, transmucosal (Straumann Dental implants immediately placed into extraction sockets. Material and methods: In this randomized-controlled clinical trial, outcomes were evaluated over a 3-year observation period. This report deals with the need for bone augmentation, healing events, implant stability and patient-centred outcomes up to 3 months only. Nine centres contributed a total of 208 immediate implant placements. All surgical and post-surgical procedures and the evaluation parameters were discussed with representatives of all centres during a calibration meeting. Following careful luxation of the designated tooth, allocation of the devices was randomly performed by a central study registrar. The allocated SLA titanium implant was installed at the bottom or in the palatal wall of the extraction socket until primary stability was reached. If the extraction socket was >or=1 mm larger than the implant, guided bone regeneration was performed simultaneously (Bio Oss and BioGide. The flaps were then sutured. During non-submerged transmucosal healing, everything was done to prevent infection. At surgery, the need for augmentation and the degree of wound closure was verified. Implant stability was assessed clinically and by means of resonance frequency analysis (RFA) at surgery and after 3 months. Wound healing was evaluated after 1, 2, 6 and 12 weeks post-operatively. RESULTS: The demographic data did not show any differences between the patients receiving either standard cylindrical or tapered implants. All implants yielded uneventful healing with 15% wound dehiscences after 1 week. After 2 weeks, 93%, after 6 weeks 96%, and after 12 weeks 100% of the flaps were closed. Ninety percent of both implant designs required bone augmentation. Immediately after implantation, RFA values were 55.8 and 56.7 and at 3 months 59.4 and 61.1 for cylindrical and tapered implants, respectively. Patient-centred outcomes did not differ between the two implant designs. However, a clear preference of the surgeon's perception for the appropriateness of the novel-tapered implant was evident. CONCLUSIONS: This RCT has demonstrated that tapered or standard cylindrical implants yielded clinically equivalent short-term outcomes after immediate implant placement into the extraction socket.