986 resultados para Globalization, regionalism, growth clubs, clustering
Resumo:
This paper proposes an innovative instance similarity based evaluation metric that reduces the search map for clustering to be performed. An aggregate global score is calculated for each instance using the novel idea of Fibonacci series. The use of Fibonacci numbers is able to separate the instances effectively and, in hence, the intra-cluster similarity is increased and the inter-cluster similarity is decreased during clustering. The proposed FIBCLUS algorithm is able to handle datasets with numerical, categorical and a mix of both types of attributes. Results obtained with FIBCLUS are compared with the results of existing algorithms such as k-means, x-means expected maximization and hierarchical algorithms that are widely used to cluster numeric, categorical and mix data types. Empirical analysis shows that FIBCLUS is able to produce better clustering solutions in terms of entropy, purity and F-score in comparison to the above described existing algorithms.
Resumo:
We propose to use the Tensor Space Modeling (TSM) to represent and analyze the user’s web log data that consists of multiple interests and spans across multiple dimensions. Further we propose to use the decomposition factors of the Tensors for clustering the users based on similarity of search behaviour. Preliminary results show that the proposed method outperforms the traditional Vector Space Model (VSM) based clustering.
Resumo:
This study contributes to the literature on international retailing by addressing a gap in the literature as to how retailers from emerging markets expand internationally. This historical case study analyzes the growth and internationalization process of Chilean retailer Falabella, one of the largest in Latin America and has been able to compete with multinationals from developed countries. The research is based upon primary and secondary data sources including 33 oral interviews with company managers and family executives, as well as industry data, corporate reports, and trade journals. Drawing on institutional theory, the findings show that by belonging to a family conglomerate, engaging in networks and partnerships, organizational learning, and having an experienced management team helped Falabella gain legitimacy in all international markets.
Resumo:
Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched.
Resumo:
Purpose: Web search engines are frequently used by people to locate information on the Internet. However, not all queries have an informational goal. Instead of information, some people may be looking for specific web sites or may wish to conduct transactions with web services. This paper aims to focus on automatically classifying the different user intents behind web queries. Design/methodology/approach: For the research reported in this paper, 130,000 web search engine queries are categorized as informational, navigational, or transactional using a k-means clustering approach based on a variety of query traits. Findings: The research findings show that more than 75 percent of web queries (clustered into eight classifications) are informational in nature, with about 12 percent each for navigational and transactional. Results also show that web queries fall into eight clusters, six primarily informational, and one each of primarily transactional and navigational. Research limitations/implications: This study provides an important contribution to web search literature because it provides information about the goals of searchers and a method for automatically classifying the intents of the user queries. Automatic classification of user intent can lead to improved web search engines by tailoring results to specific user needs. Practical implications: The paper discusses how web search engines can use automatically classified user queries to provide more targeted and relevant results in web searching by implementing a real time classification method as presented in this research. Originality/value: This research investigates a new application of a method for automatically classifying the intent of user queries. There has been limited research to date on automatically classifying the user intent of web queries, even though the pay-off for web search engines can be quite beneficial. © Emerald Group Publishing Limited.
Resumo:
Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.
Resumo:
Although Design Led Innovation activities aim to raise the value of design within the business, knowledge about which tools are available to support companies and how to apply them to make the connection between design for new product development and design as a strategic driver of growth is needed. This paper presents a conceptual method to supplement existing process and tools to assist companies to grow through design. The model extends the authors’ previous work to explore how through storytelling, customer observation can be captured and translated into new meaning, then creating new design propositions shaped into product needs, which can drive internal business activities, brand and the strategic vision. The paper contributes to a gap in the theoretical frameworks and literature by highlighting the need to align and scale design processes which match the needs of SME’s as they transition along a trajectory to become design led businesses.
Resumo:
This paper reports on a study that focused on growth of understanding about teaching geometry by a group of prospective teachers engaged in lesson plan study within a computer-supported collaborative learning (CSCL) environment. Participation in the activity was found to facilitate considerable growth in the participants’ pedagogical-content knowledge (PCK). Factors that influenced growth in PCK included the nature of the lesson planning task, the cognitive scaffolds inserted into the CSCL virtual space, the meta-language scaffolds provided to the participants, and the provision of both private and public discourse spaces. The paper concludes with recommendations for enhancing effective knowledge-building discourse about mathematics PCK within prospective teacher education CSCL environments.
Resumo:
Teacher professional development provided by education advisors as one-off, centrally offered sessions does not always result in change in teacher knowledge, beliefs, attitudes or practice in the classroom. As the mathematics education advisor in this study, I set out to investigate a particular method of professional development so as to influence change in a practising classroom teacher’s knowledge and practices. The particular method of professional development utilised in this study was based on several principles of effective teacher professional development and saw me working regularly in a classroom with the classroom teacher as well as providing ongoing support for her for a full school year. The intention was to document the effects of this particular method of professional development in terms of the classroom teacher’s and my professional growth to provide insights for others working as education advisors. The professional development for the classroom teacher consisted of two components. The first was the co-operative development and implementation of a mental computation instructional program for the Year 3 class. The second component was the provision of ongoing support for the classroom teacher by the education advisor. The design of the professional development and the mental computation instructional program were progressively refined throughout the year. The education advisor fulfilled multiple roles in the study as teacher in the classroom, teacher educator working with the classroom teacher and researcher. Examples of the professional growth of the classroom teacher and the education advisor which occurred as sequences of changes (growth networks, Hollingsworth, 1999) in the domains of the professional world of the classroom teacher and education advisor were drawn from the large body of data collected through regular face-to-face and email communications between the classroom teacher and the education advisor as well as from transcripts of a structured interview. The Interconnected Model of Professional Growth (Clarke & Hollingsworth, 2002; Hollingsworth, 1999) was used to summarise and represent each example of the classroom teacher’s professional growth. A modified version of this model was used to summarise and represent the professional growth of the education advisor. This study confirmed that the method of professional development utilised could lead to significant teacher professional growth related directly to her work in the classroom. Using the Interconnected Model of Professional Growth to summarise and represent the classroom teacher’s professional growth and the modified version for my professional growth assisted with the recognition of examples of how we both changed. This model has potential to be used more widely by education advisors when preparing, implementing, evaluating and following-up on planned teacher professional development activities. The mental computation instructional program developed and trialled in the study was shown to be a successful way of sequencing and managing the teaching of mental computation strategies and related number sense understandings to Year 3 students. This study was conducted in one classroom, with one teacher in one school. The strength of this study was the depth of teacher support provided made possible by the particular method of the professional development, and the depth of analysis of the process. In another school, or with another teacher, this might not have been as successful. While I set out to change my practice as an education advisor I did not expect the depth of learning I experienced in terms of my knowledge, beliefs, attitudes and practices as an educator of teachers. This study has changed the way in which I plan to work as an education advisor in the future.
Resumo:
Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.
Resumo:
In the last few years we have observed a proliferation of approaches for clustering XML docu- ments and schemas based on their structure and content. The presence of such a huge amount of approaches is due to the different applications requiring the XML data to be clustered. These applications need data in the form of similar contents, tags, paths, structures and semantics. In this paper, we first outline the application contexts in which clustering is useful, then we survey approaches so far proposed relying on the abstract representation of data (instances or schema), on the identified similarity measure, and on the clustering algorithm. This presentation leads to draw a taxonomy in which the current approaches can be classified and compared. We aim at introducing an integrated view that is useful when comparing XML data clustering approaches, when developing a new clustering algorithm, and when implementing an XML clustering compo- nent. Finally, the paper moves into the description of future trends and research issues that still need to be faced.
Resumo:
It is to estimate the trend of suicide rate changes during the past three decades in China and try to identify its social and economic correlates. Official data of suicide rates and economic indexes during 1982–2005 from Shandong Province of China were analyzed. The suicide data were categorized for the rural / urban location and gender, and the economic indexes include GDP, GDP per capita, rural income, and urban income, all adjusted for inflation. We found a significant increase of economic development and decrease of suicide rates over the past decades under study. The suicide rate decrease is correlated with the tremendous growth of economy. The unusual decrease of Chinese suicide rates in the past decades is accounted for within the Chinese cultural contexts and maybe by the Strain Theory of Suicide.