921 resultados para Glass ceiling
Resumo:
The transition from hard to soft magnetic behaviour with increasing quenching rate is shown for Nd60WAl10Fe20Co10 melt-spun ribbons with different thickness. Microstructure and magnetic domain structure of ribbons were studied by magnetic force microscopy (MFM). Particle sizes < 5 nm decreasing gradually with increasing quenching rate were deduced from topographic images which differ from large-scale magnetic domains with a periodicity of about 350 nm in all ribbons irrespective the coercivity. This indicates that the magnetic properties of the alloy are governed by interaction of small magnetic particles. It is concluded that the presence of short-range-ordered structures with a local ordering similar to the Al metastable Nd-Fe binary phase is responsible for the hard magnetic properties in samples subjected to relatively low quenching rate.
Resumo:
Magnetic domain structure of hard magnetic Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic force microscopy. In the magnetic force images it is shown that the exchange interaction type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. As the scale of the magnetic domain is much larger than the size of the short-range ordered atomic clusters existing in the BMG, it is believed that the large areas of magnetic contrast are actually a collection of a group of clusters aligned in parallel by strong exchange coupling interaction. After fully crystallization, the BMG exhibits paramagnetism. No obvious magnetic contrast is observed in the magnetic force images of fully crystallized samples, except for a small quantity of ferromagnetic crystalline phase with low coercivity and an average size of 900 nm.
Resumo:
We investigate plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass using depth sensing nanoindentation. Numerous serrations in the load-displacement curves during indentation, shear bands and pile-ups around the indent were observed. The results revealed that the serrated plastic flow behaviour in this alloy depends strongly on the indentation strain rate.
Resumo:
The stability of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) upon isothermal annealing near the glass transition temperature has been investigated by using x-ray diffraction, differential scanning calorimetry, and the pulse echo overlap method. The density, elastic constants, and thermodynamic parameters as well as their annealing time dependence have been determined. The microstructural and properties changes of the annealed BMG were checked by acoustic measurement. Obvious structural and property changes were observed with prolonged annealing of the BMG near the glass transition temperature.
Resumo:
Compressive deformation behavior of the Nd60Fe20Co10Al10 bulk metallic glass was characterized over a wide strain rate range (6.0 x 10(-4) to 1.0x10(3) s(-1)) at room temperature. Fracture stress was found to increase and fracture strain decrease with increasing applied strain rate. Serrated flow and a large number of shear bands were observed at the quasi-static strain rate (6.0 x 10(-4)s(-1)). The results suggest that the appearance of a large number of shear bands is probably associated with flow serration observed during compression; and both shear banding and flow serration are a strain accommodation and stress relaxation process. At dynamic strain rates (1.0 x 10(3) s(-1)), the rate of shear band nucleation is not sufficient to accommodate the applied strain rate and thus causes an early fracture of the test sample. The fracture behavior of the Nd60Fe20Co10Al10 bulk metallic glass is sensitive to strain rate.
Resumo:
The deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass was studied by in situ scanning electron microscopy (SEM) quasi-static uniaxial compression tests at room temperature. Multiple shear bands were observed with a large plasticity. Microscopic examination demonstrates that slipping, branching and intersecting of multiple shear bands are the main mechanisms for enhancing the plasticity of this metallic glass. Additionally, nano/micro-scale voids and cracks at the intersecting sites of shear bands and preferential etching of shear bands were observed as well. These observations demonstrated that the formation of shear bands in bulk metallic glasses is resulted mainly from local free volume coalescence.
Resumo:
The strain rate dependence of plastic deformation of Ce60Al15CU10Ni15 bulk metallic glass was studied by nanoindentation. Even though the ratio of room temperature to the glass transition temperature was very high (0.72) for this alloy, the plastic deformation was dominated by shear banding under nanoindentation. The alloy exhibited a critical loading rate dependent serrated flow feature. That is, with increasing loading rate, the alloy exhibited a transition from less prominent serrated flow to pronounced serrated flow during continuous loading but from serrated to smoother flow during stepped loading.
Resumo:
Magnetic domain structure of Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic-force microscopy. In the magnetic-force images it is shown that the exchange-interaction-type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. The existence of the large-scale domains demonstrates that the magnetic moments of a great deal of short-scale ordered atomic clusters in the BMG have been aligned by exchange coupling. Annealing at 715 K leads to partial crystallization of the BMG. However, the exchange coupling is stronger in the annealed sample, which is considered to arise from the increase of transition-metal concentration in the amorphous phase due to the precipitation of Nd crystalline phase.
Resumo:
Spherical nanoindentation tests were performed on Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass and pile-ups were observed around the indenter. A new modified expanding cavity model was developed to characterize the indentation deformation behavior of strain-hardening and pressure-dependent materials. By using this model, the representative stress-strain response of this bulk metallic glass to hardness and indentation in the elastic-plastic regime were obtained taking into consideration the effect of pile-up.
Resumo:
A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti-50 Cu-23 Ni-20 Sn-7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3% (mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2 195 MPa, 3.1% and 1 913 MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti-50 Ni-20 Cu-23 Sn-7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.
Resumo:
The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.
Resumo:
Crystallization, melting and structural evolution upon crystallization in Nd60Al10Fe20Co10 bulk metallic glass (BMG) are in situ investigated by x-ray diffraction with synchrotron radiation under high pressure. It is found that the crystallization is pressure promoted, while themelting is inhibited. The crystallization and melting process are also changed under high pressure. The features of the crystallization and melting under high pressure are discussed.
Resumo:
This paper reports the design and electrical characterization of a micromechanical disk resonator fabricated in single crystal silicon using a foundry SOI micromachining process. The microresonator has been selectively excited in the radial extensional and the wine glass modes by reversing the polarity of the DC bias voltage applied on selected drive electrodes around the resonant structure. The quality factor of the resonator vibrating in the radial contour mode was 8000 at a resonant frequency of 6.34 MHz at pressure below 10 mTorr vacuum. The highest measured quality factor of the resonator in the wine glass resonant mode was 1.9 × 106 using a DC bias voltage of 20 V at about the same pressure in vacuum; the resonant frequency was 5.43 MHz and the lowest motional resistance measured was approximately 17 kΩ using a DC bias voltage of 60 V applied across 2.7 μm actuation gaps. This corresponds to a resonant frequency-quality factor (f-Q) product of 1.02 × 1013, among the highest reported for single crystal silicon microresonators, and on par with the best quartz crystal resonators. The quality factor for the wine glass mode in air was approximately 10,000. © 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.
Resumo:
We report on the experimental characterization of a single crystal silicon square-plate microresonator. The resonator is excited in the square wine glass (SWG) mode at a mechanical resonance frequency of 2.065 MHz. The resonator displays quality factor of 9660 in air and an ultra-high quality factor of Q = 4.05 × 106 in 12 mtorr vacuum. The SWG mode may be described as a square plate that contracts along one axis in the fabrication plane, while simultaneously extending along an orthogonal axis in the same plane. The resonant structure is addressed in a 2-terminal configuration by utilizing equal and opposite drive polarities on surrounding capacitor electrodes, thereby decreasing the motional resistance of the resonator. The resonant micromechanical device has been fabricated in a commercial silicon-on-insulator process through the MEMSCAP foundry utilising a minimum electrostatic gap of 2 μm. © 2008 IEEE.