651 resultados para Glaciology.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the summer of 2003, a ground-penetrating radar survey around the North Greenland Icecore Project (NorthGRIP) deep ice-core drilling site (75°06' N, 42°20' W; 2957 m a.s.l.) was carried out using a shielded 250 MHz radar system. The drill site is located on an ice divide, roughly 300 km north-northwest of the summit of the Greenland ice sheet. More than 430 km of profiles were measured, covering a 10 km by 10 km area, with a grid centered on the drilling location, and eight profiles extending beyond this grid. Seven internal horizons within the upper 120 m of the ice sheet were continuously tracked, containing the last 400 years of accumulation history. Based on the age-depth and density-depth distribution of the deep core, the internal layers have been dated and the regional and temporal distribution of accumulation rate in the vicinity of NorthGRIP has been derived. The distribution of accumulation shows a relatively smoothly increasing trend from east to west from 145 kg/m**2/a to 200 kg/m**2/a over a distance of 50 km across the ice divide. The general trend is overlain by small-scale variations on the order of 2.5 kg/m**2/a/km, i.e. around 1.5% of the accumulation mean. The temporal variations of the seven periods defined by the seven tracked isochrones are on the order of +-4% of the mean of the last 400 years, i.e. at NorthGRIP ±7 kg/m**2/a. If the regional accumulation pattern has been stable for the last several thousand years during the Holocene, and ice flow has been comparable to today, advective effects along the particle trajectory upstream of NorthGRIP do not have a significant effect on the interpretation of climatically induced changes in accumulation rates derived from the deep ice core over the last 10 kyr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interpretation of ice-core records requires accurate knowledge of the past and present surface topography and stress-strain fields. The European Project for Ice Coring in Antarctica (EPICA) drilling site (0.0684° E and 75.0025° S, 2891.7 m) in Dronning Maud Land, Antarctica, is located in the immediate vicinity of a transient and splitting ice divide. A digital elevation model is determined from the combination of kinematic GPS measurements with the GLAS12 data sets from the ICESat satellite. Based on a network of stakes, surveyed with static GPS, the velocity field around the EDML drilling site is calculated. The annual mean velocity magnitude of 12 survey points amounts to 0.74 m/a. Flow directions mainly vary according to their distance from the ice divide. Surface strain rates are determined from a pentagon-shaped stake network with one center point, close to the drilling site. The strain field is characterised by along flow compression, lateral dilatation, and vertical layer thinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new digital elevation model (DEM) is derived for the ice sheet in western Dronning Maud Land, Antarctica. It is based on differential interferometric synthetic aperture radar (SAR) from the European Remote Sensing 1/2 (ERS-1/2) satellites, in combination with ICESat's Geoscience Laser Altimeter System (GLAS). A DEM mosaic is compiled out of 116 scenes from the ERS-1 ice phase in 1994 and the ERS-1/2 tandem mission between 1996 and 1997 with the GLAS data acquired in 2003 that served as ground control. Using three different SAR processors, uncertainties in phase stability and baseline model, resulting in height errors of up to 20 m, are exemplified. Atmospheric influences at the same order of magnitude are demonstrated, and corresponding scenes are excluded. For validation of the DEM mosaic, covering an area of about 130,000 km**2 on a 50-m grid, independent ICESat heights (2004-2007), ground-based kinematic GPS (2005), and airborne laser scanner data (ALS, 2007) are used. Excluding small areas with low phase coherence, the DEM differs in mean and standard deviation by 0.5 +/- 10.1, 1.1 +/- 6.4, and 3.1 +/- 4.0 m from ICESat, GPS, and ALS, respectively. The excluded data points may deviate by more than 50 m. In order to suppress the spatially variable noise below a 5-m threshold, 18% of the DEM area is selectively averaged to a final product at varying horizontal spatial resolution. Apart from mountainous areas, the new DEM outperforms other currently available DEMs and may serve as a benchmark for future elevation models such as from the TanDEM-X mission to spatially monitor ice sheet elevation.