978 resultados para Genetically-modified Foods
Resumo:
The relative importance of molecular biology in clinical practice is often underestimated. However, numerous procedures in clinical diagnosis and new therapeutic drugs have resulted from basic molecular research. Furthermore, understanding of the physiological and physiopathological mechanisms underlying several human diseases has been improved by the results of basic molecular research. For example, cloning of the gene encoding leptin has provided spectacular insights into the understanding of the mechanisms involved in the control of food intake and body weight maintenance in man. In cystic fibrosis, the cloning and identification of several mutations in the gene encoding the chloride channel transmembrane regulator (CFTR) have resolved several important issues in clinical practice: cystic fibrosis constitutes a molecular defect of a single gene. There is a strong correlation between the clinical manifestations or the severity of the disease (phenotype) with the type of mutations present in the CFTR gene (genotype). More recently, identification of mutations in the gene encoding a subunit of the renal sodium channel in the Liddle syndrome has provided important insight into the physiopathological understanding of mechanisms involved in this form of hereditary hypertension. Salt retention and secondary high blood pressure are the result of constitutive activation of the renal sodium channel by mutations in the gene encoding the renal sodium channel. It is speculated that less severe mutations in this channel could result in a less severe form of hypertension which may correspond to patients suffering from high blood pressure with low plasma renin activity. Several tools, most notably PCR, are derived from molecular research and are used in everyday practice, i.e. in prenatal diagnosis and in the diagnosis of several infectious diseases including tuberculosis and hepatitis. Finally, the production of recombinant proteins at lower cost and with fewer side effects is used in everyday clinical practice. Gene therapy remains an extraordinary challenge in correcting severe hereditary or acquired diseases. The use of genetically modified animal cell lines producing growth factors, insulin or erythropoetin, which are subsequently encapsulated and transferred to man, represents an attractive approach for gene therapy.
Resumo:
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Between Immunology And Tolerance: Controlling Immune Responses Employing Tolerogenic Dendritic Cells
Resumo:
Dendritic cells (DCs) are the most efficient antigen presenting cells, they provide co-stimulation, are able to secrete various proinflammatory cytokines and therefore play a pivotal role in shaping adaptive immune responses. Moreover, they are important for the promotion and maintenance of central and peripheral tolerance through several mechanisms like the induction of anergy or apoptosis in effector T cells or by promoting regulatory T cells. The murine CD8α+ (MuTu) dendritic cell line was previously derived and described in our laboratory. The MuTu cell line has been shown to maintain phenotypical and functional characteristics of endogenous CD8α+ DCs. They are able to cross-present exogenous antigens to CD8+ T cells and produce interleukin (IL-) 12 upon engagement of Toll like receptors. The cell line constitutes an infinite source of homogenous, phenotypically well-defined dendritic cells. This allows us to investigate the role and potential of specific molecules in the induction as well as regulation of immune responses by DCs in a rational and standardized way. In a first project the MuTu dendritic cell line was transduced in order to stably express the immunosuppressive molecules IL-10, IL-35 or the active form of TGF-β (termed IL-10+DC, IL-35+DC or actTGFβ+DC). We investigated the capability of these potentially suppressive or tolerogenic dendritic cell lines to induce immune tolerance and explore the mechanisms behind tolerance induction. The expression of TGF-β by the DC line did not affect the phenotype of the DCs itself. In contrast, IL-10+ and IL-35+DCs were found to exhibit lower expression of co-stimulatory molecules and MHC class I and II, as well as reduced secretion of pro-inflammatory cytokines upon activation. In vitro co-culture with IL-35+, IL10+ or active TGFβ+ DCs interfered with function and proliferation of CD4+ and CD8+ T cells. Furthermore, IL-35 and active TGF-β expressing DC lines induced regulatory phenotype on CD4+ T cells in vitro without or with expression of Foxp3, respectively. In different murine cancer models, vaccination with IL-35 or active TGF-β expressing DCs resulted in faster tumor growth. Interestingly, accelerated tumor growth could be observed when IL-35-expressing DCs were injected into T cell-deficient RAG-/- mice. IL-10expressing DCs however, were found to rather delay tumor growth. Besides the mentioned autocrine effects of IL-35 expression on the DC line itself, we surprisingly observed that the expression of IL-35 or the addition of IL-35 containing medium enhances neutrophil survival and induces proliferation of endothelial cells. Our findings indicate that the cytokine IL-35 might not only be a potent regulator of adaptive immune responses, but it also implies IL-35 to mediate diverse effects on an array of cellular targets. This abilities make IL-35 a promising target molecule not only for the treatment of auto-inflammatory disease but also to improve anti-cancer immunotherapies. Indeed, by applying active TGFβ+ in murine autoimmune encephalitis we were able to completely inhibit the development of the disease, whereas IL-35+DCs reduced disease incidence and severity. Furthermore, the preventive transfer of IL-35+DCs delayed rejection of transplanted skin to the same extend as the combination of IL-10/actTGF-β expressing DCs. Thus, the expression of a single tolerogenic molecule can be sufficient to interfere with the adequate activation and function of dendritic cells and of co-cultured T lymphocytes. The respective mechanisms of tolerance induction seem to be different for each of the investigated molecule. The application of a combination of multiple tolerogenic molecules might therefore evoke synergistic effects in order to overcome (auto-) immunity. In a second project we tried to improve the immunogenicity of dendritic cell-based cancer vaccines using two different approaches. First, the C57BL/6 derived MuTu dendritic cell line was genetically modified in order to express the MHC class I molecule H-2Kd. We hypothesized that the expression of BALB/c specific MHC class I haplotype (H-2Kd) should allow the priming of tumor-specific CD8+ T cells by the otherwise allogeneic dendritic cells. At the same time, the transfer of these H-2Kd+ DCs into BALB/c mice was thought to evoke a strong inflammatory environment that might act as an "adjuvant", helping to overcome tumor induced immune suppression. Using this so called "semi-allogeneic" vaccination approach, we could demonstrate that the delivery of tumor lysate pulsed H-2Kd+ DCs significantly delayed tumor growth when compared to autologous or allogeneic vaccination. However, we were not able to coherently elucidate the cellular mechanisms underlying the observed effect. Second, we generated MuTu DC lines which stably express the pro-inflammatory cytokines IL-2, IL-12 or IL-15. We investigated whether the combination of DC vaccination and local delivery of pro-inflammatory cytokines might enhance tumor specific T cell responses. Indeed, we observed an enhanced T cell proliferation and activation when they were cocultured in vitro with IL-12 or IL-2-expressing DCs. But unfortunately we could not observe a beneficial or even synergistic impact on tumor development when cytokine delivery was combined with semi-allogeneic DC vaccination.
Resumo:
The Spanish Government has established post-market environmental monitoring (PMEM) as mandatory for genetically modified (GM) crop varieties cultivated in Spain. In order to comply with this regulation, effects of Bt maize varieties derived from the event MON810 on the predatory fauna were monitored for two years in northeast and central Spain. The study was carried out with a randomized block design in maize fields of 3-4 ha on which the abundance of plant-dwelling predators and the activity-density of soil-dwelling predators in Bt vs. non-Bt near-isogenic varieties were compared. To this end, the plots were sampled by visual inspection of a certain number of plants and pitfall traps 6 or 7 times throughout two seasons. No significant differences in predator densities on plants were found between Bt and non-Bt varieties. In the pitfall traps, significant differences between the two types of maize were found only in Staphylinidae, in which trap catches in non-Bt maize were higher than in Bt maize in central Spain. Based on the statistical power of the assays, surrogate arthropods for PMEM purposes are proposed; Orius spp. and Araneae for visual sampling and Carabidae, Araneae, and Staphylinidae for pitfall trapping. The other predator groups recorded in the study, Nabis sp. and Coccinellidae in visual sampling and Dermaptera in pitfall trapping, gave very poor power results. To help to establish a standardized protocol for PMEM of genetically modified crops, the effect-detecting capacity with a power of 0.8 of each predator group is given.
Resumo:
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Resumo:
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Resumo:
It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.
Resumo:
The involvement of lipoxygenase isozymes in several physiological processes of plants has been described but their role is not well understood and more biochemical studies are needed to elucidate the role of the "Lipoxygenase Pathway" in plant physiology. Thus, the biochemical and kinetic characterization of a lipoxygenases "pool" from soybean leaves was carried out. Two genotypes were used: IAC-100 (a normal variety having lipoxygenases in the seeds) and IAC-100 TN (genetically modified genotype, which is devoid of lipoxygenases in the seeds). The plants were submitted to the application of fatty acids (lipoxygenase substrates) on leaves. The results of the biochemical and kinetic studies of lipoxygenase isozymes from leaves of the two genotypes analysed showed that genetic removal of lipoxygenase from seeds did not affect the response of the plant to the treatment, since both genotypes showed similar results.
Resumo:
Accumulated evidence indicates that oxidative stress plays a role in neurodegenerative diseases, such as Alzheimer, Parkinson and Amyotrophic Lateral Sclerosis. Here, we emphasize the results provided by the technology of genetically modified animals. Studies with transgenic and knockout mice have allowed great advances in the research of oxidative stress in general and in the central nervous system, and are pointing to potential targets for the development of new drugs and therapies to disrupt the cycle of events that lead to neuronal death. Thus, genetically modified animals are a valuable tool for the comprehension of human diseases, including neurodegenerative ones.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
Transgenic technology has become an essential tool for the development of animal biotechnologies, and animal cloning through somatic cell nuclear transfer (SCNT) enabled the generation of genetically modified animals utilizing previously modified and selected cell lineages as nuclei donors, assuring therefore the generation of homogeneous herds expressing the desired modification. The present study aimed to discuss the use of SCNT as an important methodology for the production of transgenic herds, and also some recent insights on genetic modification of nuclei donors and possible effects of gene induction of pluripotency on SCNT.
Resumo:
The use of the Roundup Ready(r) technology and the cultivation of a second crop influence the floristic composition of weed communities in Brazilian Central-West region cropping systems. This study has aimed to diagnose the dominant weed species in southwestern Goiás in areas of genetically-modified and conventional soybeans, using phytosociological and floristic surveys. Weed sampling was obtained by collecting all the plants present within a 0.5 m hollow frame, randomly thrown 20 times in each of thirty-five agricultural areas in the 2012/2013 harvest. Field survey was carried out in three periods: before desiccation for soybean sowing, before postemergence herbicide in soybean first application and before postemergence herbicide application in late harvest. A total of 525 m2 was inventoried and 3,219 weeds were collected, which included 79 species, 58 genera and 28 families. Families Poaceae, Asteraceae, Euphorbiaceae, Fabaceae, Amaranthaceae, were the most representative in the survey. Species Cenchrus echinatus, Glycine max, Chamaesyce hirta, Commelina benghalensis, and Alternanthera tenella stood out in importance. The RR+millet soybean treatment had the highest number of species (44), while the conventional soybean + sorghum treatment had the lowest number of species (18). The highest number of species was recorded in first sampling period. Treatments conventional soybean + maize and conventional soybean + millet showed higher similarity (70%), while treatments RR soybean + millet and conventional soybean + sorghum showed the least (51%). Species of difficult control were recorded in all cultivation systems analyzed.
Resumo:
Mammalian spermatozoa gain their fertilizing ability during maturation in the epididymis. Proteins and lipids secreted into the epididymal lumen remodel the sperm membrane, thereby providing the structure necessary for progressive motility and oocyte interaction. In the current study, genetically modified mouse models were utilized to determine the role of novel genes and regulatory systems in the postnatal development and function of the epididymis. Ablation of the mouse β-defensin, Defb41, altered the flagellar movements of sperm and reduced the ability of sperm to bind to the oocyte in vitro. The Defb41-deficient iCre knock-in mouse model was furthermore utilized to generate Dicer1 conditional knock-out (cKO) mice. DICER1 is required for production of mature microRNAs in the regulation of gene expression by RNA interference. Dicer1 cKO gave rise to dedifferentiation of the epididymal epithelium and an altered expression of genes involved in lipid synthesis. As a consequence, the cholesterol:polyunsaturated fatty acid ratio of the Dicer1 cKO sperm membrane was increased, which resulted in membrane instability and infertility. In conclusion, the results of the Defb41 study further support the important role of β-defensin family members in sperm maturation. The regulatory role of Dicer1 was also shown to be required for epididymal development. In addition, the study is the first to show a clear connection between lipid homeostasis in the epididymis and sperm membrane integrity. Taken together, the results give important new evidence on the regulatory system guiding epididymal development and function
Resumo:
The strategy described in the present paper offers details about the possibility for Brazil to play a more substantial role in the gene revolution. If successfully applied, the powerful science-based technology currently available in Brazil can contribute to extend the benefits of the gene revolution to the poorest countries, very much like the Green Revolution did in the past, thereby reducing the hunger syndrome which claimed the lives of millions of people in some Asian countries, particularly Pakistan and India, decades ago. In his visit to Brazil in February 2004, Norman Borlaug had the opportunity to witness the success of Brazilian agriculture. At a Conference held at ESALQ - Superior School of Agriculture Luiz de Queiroz in Piracicaba, SP, Brazil, he stated that the 21st century revolution will come from Brazil in the area of agriculture. He also said that reducing hunger is essential for the world to achieve socioeconomic stability. A central question remains unanswered: who will fund this revolution? The FAO 2003-2004 Annual Report listed the barriers preventing the gene revolution from reaching the poorest countries: inadequate regulatory procedures - Intellectual Property Rights and Biosafety, poorly functioning seed delivering systems and weak domestic plant breeding capacity; all are discussed in this paper.
Resumo:
We evaluated the protein quality of organic and transgenic soy fed to rats throughout life. Thirty female Wistar rats were divided into three groups (N = 10): organic soy group (OSG) receiving organic soy-based diet, genetically modified soy group (GMSG) receiving transgenic soy-based diet, and a control group (CG) receiving casein-based diet. All animals received water and isocaloric diet (10% protein), ad libitum for 291 days. After this, the weight of GMSG animals (290.9 ± 9.1 g) was significantly lower (P <= 0.04) than CG (323.2 ± 7.9 g). The weight of OSG (302.2 ± 8.7 g) was between that of the GMSG and the CG. Protein intake was similar for OSG (308.4 ± 6.8 g) and GMSG (301.5 ± 2.5 g), and significantly lower (P <= 0.0005) than the CG (358.4 ± 8.1 g). Growth rate was similar for all groups: OSG (0.80 ± 0.02 g), GMSG (0.81 ± 0.03 g) and CG (0.75 ± 0.02 g). In addition to providing a good protein intake and inducing less weight gain, both types of soy were utilized in a manner similar to that of casein, suggesting that the protein quality of soy is similar to that of the standard protein casein. The groups fed soy-based diet gained less weight, which may be considered to be beneficial for health. We conclude that organic and transgenic soy can be fed throughout life to rats in place of animal protein, because contain high quality protein and do not cause a marked increase in body weight.