907 resultados para Genetic Predisposition to Disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic susceptibility to juvenile idiopathic arthritis (JIA) was studied in the genetically homogeneous Finnish population by collecting families with two or three patients affected by this disease from cases seen in the Rheumatism Foundation Hospital. The number of families ranged in different studies from 37 to 45 and the total number of patients with JIA, from among whom these cases were derived, was 2 000 to 2 300. Characteristics of the disease in affected siblings in Finland were compared with a population-based series and with a sibling series from the United States. A thorough clinical and ophthalmological examination was made of all affected patients belonging to sibpair series. Information on the occurrence of chronic rheumatic diseases in parents was collected by questionnaire and diagnoses were confirmed from hospital records. All patients, their parents and most of the healthy sibs were typed for human leukocyte antigen (HLA) alleles in loci A, C, B, DR and DQ. The HLA allele distribution of the cases was compared with corresponding data from Finnish bone marrow donors. The genetic component in JIA was found to be more significant than previously believed. A concordance rate of 25% for a disease with a population prevalence of 1 per 1000 implied a relative risk of 250 for a monozygotic (MZ) twin. An estimate for the sibling risk of an affected individual was about 15- to 20-fold. The disease was basically similar in familial and sporadic cases; the mean age at disease onset was however lower in familial cases, (4.8 years vs 7.4 years). Three sibpairs (3.4 expected) were concordant for the presence of asymptomatic uveitis. Uveitis would thus not appear to have any genetic component of its own, separate from the genetic basis of JIA. Four of the parents had JIA (0.2 cases expected), four had a type of rheumatoid factor-negative arthritis similar to that seen in juvenile patients but commencing in adulthood, and one had spondyloarthropathy (SPA). These findings provide additional support for the conception of a genetic predisposition to JIA and suggest the existence of a new disease entity, JIA of adult onset. Both the linkage analysis of the affected sibpairs and the association analysis of nuclear families provided overwhelming evidence of a major contribution of HLA to the genetic susceptibility to JIA. The association analysis in the Finnish population confirmed that the most significant associations prevailed for DRB1*0801, DQB1*0402, as expected from previous observations, and indicated the independent role of Cw*0401.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both. sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staph- ylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. How- ever, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with meth- icillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a prema- ture stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of pro- tein-truncating mutations are highly unusual. Our results demon- strate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asthma is a complex disease, influenced by both environmental and genetic factors. In this study, the analysis of multiple environmental factos assessed by questionnaire and the genotyping of SNPs IL131c.144 G/A, IL41590 C/T, IL41RP2 253183, ADRB21c.16 A/G, ADAM331V4 C/G, ADAM331S1 c.710 G/A, GSDML1236 C/T and STAT6121 C/T were performed in a sample of Madeiran asthmatic patients and their families, and their association to asthma susceptibility and severity was assessed. Family, environmental, social and individual factos such as the presence of rhinitis in one of the parents,the habitation conditions, the family smoking habits, individual food habits and allergen sensitivity, were found to account for asthma severity. IL41590*T and IL41RP2*183$ alleles as well as the combined genotypes IL41590*CT/IL41590*TT and IL41 RP2*253183/IL41RP2*253183 were associated to both asthma susceptibility and severity.GSDML1236*TT was found associated only to asthma severity.Allele ADAM331 V4*C was significantly overM transmitted to asthmatic offspring being linked with the disease by TDT. These findings suggest that in addition to environmental influences, IL41 590 C/T, IL41RP2 253183, ADAM331V4 C/G and GSDML1236 C/T SNPs may constitute important genetic factos contributing to asthmasusceptibility and/or severity in Madeira population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant interindividual variations in health outcome may be caused by the inheritance of variant polymorphic genes, such as CYP2D6 and CYP2E1 for activation, and GSTM1 and GSTT1 for detoxification of chemicals. However. mechanistic studies linking the inheritance of predisposing genes with genotoxic effects towards cancer have yet to be systematically conducted. We have studied 54 lung cancer patients and 50 matched normal controls, who have been cigarette smokers, to elucidate the role of polymorphic genes in cancer. Our data indicates that the inheritance of unfavorable CYP2D6, CYP2E1, and GSTT1 genes is strongly correlated with the smoking-related lung cancer. For heavy cigarette smokers (> 30 pack-years), the smoking habit is the strongest predictor of lung cancer risk irrespective of the inheritance of unfavorable metabolizing genes. For moderate to light smokers (< 30 pack-years), the genetic predisposition plays on important role For the risk (odds ratio = 3.46; 95% CL = 0.46-40.2). Using a subgroup of the study population, we observed that cigarette smokers having the defective GST genes have significantly more chromosome aberrations as determined by the fluorescence-in-situ-hybridization (FISH) technique than smokers with the normal GST genes (P < 0.001). In conclusion, our study provides data to indicate that individuals who have inherited unfavorable metabolizing genes have increased body burden of toxicants to cause increased genetic damage and to have increased risk for cancer. Studies like ours can be used to understand the basis for interindividual variations in cancer outcome, to identify high risk individuals and to assess health risk. (C) 1997 Wiley Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HFE-associated hereditary haemochromatosis is a recessive, iron-overload disorder that affects about one in 200 north Europeans and that can be easily prevented. However, genetic screening for this disease is controversial, and so we assessed whether such screening was suitable for communities. Cheek-brush screening for the Cys282Tyr HFE mutation was offered to individuals in the workplace. Outcomes were assessed by questionnaires before and after testing. 11307 individuals were screened. We recorded no increase in anxiety. in individuals who were homozygous for the Cys282Tyr mutation or non-homozygous. Self-reported tiredness before testing was significantly higher in homozygous participants than in non-homozygous participants (chi(2) test, p=0.029). Of the 47 homozygous individuals identified, 46 have taken steps to treat or prevent iron accumulation. Population genetic screening for HFE-associated hereditary haemochromatosis can be practicable and acceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crohn's disease (CD) is associated with a number of secondary conditions including osteoporosis, which increases the risk of bone fracture. The cause of metabolic bone disease in this Population is believed to be multifactorial and may include the disease itself and associated inflammation, high-close corticosteroid use, weight loss and malabsorption, a lack of exercise and physical activity, and all underlying genetic predisposition to bone loss. Reduced bone mineral density has been reported in between 5% to 80% of CD sufferers, although it is generally believed that approximately 40% of patients suffer from osteopenia and 15% from osteoporosis. Recent studies Suggest a small but significantly increased risk of fracture compared with healthy controls and, perhaps, sufferers of other gastrointestinal disorders Such as ulcerative colitis. The role of physical activity and exercise in the prevention and treatment of CD-related bone loss has received little attention, despite the benefits of specific exercises being well documented in healthy populations. This article reviews the prevalence of and risk factors for low bone mass in CD patients and examines various treatments for osteoporosis in these patients, with a particular focus on physical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimising the container transfer schedule at the multimodal terminals is known to be NP-hard, which implies that the best solution becomes computationally infeasible as problem sizes increase. Genetic Algorithm (GA) techniques are used to reduce container handling/transfer times and ships' time at the port by speeding up handling operations. The GA is chosen due to the relatively good results that have been reported even with the simplest GA implementations to obtain near-optimal solutions in reasonable time. Also discussed, is the application of the model to assess the consequences of increased scheduled throughput time as well as different strategies such as the alternative plant layouts, storage policies and number of yard machines. A real data set used for the solution and subsequent sensitivity analysis is applied to the alternative plant layouts, storage policies and number of yard machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.