899 resultados para Generation of 1898
Resumo:
The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10 gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.
Resumo:
Hemispherical electron plasma waves generated from ultraintense laser interacting with a solid target having a subcritical preplasma is studied using particle-in-cell simulation. As the laser pulse propagates inside the preplasma, it becomes self-focused due to the response of the plasma electrons to the ponderomotive force. The electrons are mainly heated via betatron resonance absorption and their thermal energy can become higher than the ponderomotive energy. The hot electrons easily penetrate through the thin solid target and appear behind it as periodic hemispherical shell-like layers separated by the laser wavelength.
Resumo:
Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments.
Resumo:
We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum-electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high-Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.
Resumo:
A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser pulse (∼10 W/cm) irradiating cone targets is proposed and investigated using particle-in-cell simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at the cone's tip. In the course of the work, best results were obtained employing target configurations combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity profile. © 2014 AIP Publishing LLC.
Resumo:
A ditopic ligand (1), containing two tridentate bis(acylhydrazone) subunits and bearing both long alkyl chains and hydrogen-bonding groups, has been synthesised. Metal cation binding in the presence of a base leads to hierarchical self-assembly, forming first a neutral [2 x 2] grid-type complex (2) that hierarchically assembles into metallosupramolecular polymer gels in toluene.
Resumo:
An ultra-relativistic electron beam propagating through a high-Z solid triggersan electromagnetic cascade, whereby a large number of high-energy photons andelectron–positron pairs are produced mainly via the bremsstrahlung and Bethe–Heitler processes, respectively. These mechanisms are routinely used to generatepositron beams in conventional accelerators such as the electron–positron collider(LEP). Here we show that the application of similar physical mechanisms to a laserdrivenelectron source allows for the generation of high-quality positron beams in amuch more compact and cheaper configuration. We anticipate that the applicationof these results to the next generation of lasers might open the pathway for therealization of an all-optical high-energy electron–positron collider.
Resumo:
Experimental results on relativistic surface HHG at a repetition rate of 10 Hz are presented. Average powers in the 10?W range are generated in the spectral range of 51 to 26 nm (24-48 eV). The surface harmonic radiation is produced by focusing the second-harmonic of a high-power laser onto a rotating glass surface to moderately relativistic intensities of 3×10 19Wcm ?2. The harmonic emission exhibits a divergence of 26 mrad. Together with absolute photon numbers recorded by a calibrated spectrometer, this allows for the determination of the extreme ultraviolet (XUV) yield. The pulse energies of individual harmonics are reaching up to the μJ level, equivalent to an efficiency of 10 ?5. The capability of producing stable and intense high-harmonic radiation from relativistic surface plasmas may facilitate experiments on nonlinear ionization or the seeding of free-electron lasers. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Farming of salmon has become a significant industry in many countries over the past two decades. A major challenge facing this sector is infestation of the salmon by sea lice. The main way of treating salmon for such infestations is the use of medicines such as organophosphates, pyrethrins, hydrogen peroxide or benzoylphenyl ureas. The use of these medicines in fish farms is, however, highly regulated due to concerns about contamination of the wider marine environment. In this paper we report the use of photochemically active biocides for the treatment of a marine copepod, which is a model of parasitic sea lice. Photochemical activation and subsequent photodegradation of PDAs may represent a controllable and environmentally benign option for control of these parasites or other pest organisms in aquaculture.
Resumo:
Electron–positron (e–p) plasmas are widely thought to be emitted, in the form of ultra-relativistic winds or collimated jets, by some of the most energetic or powerful objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena represent an unmatched astrophysical laboratory to test physics at its limit and, given their immense distance from Earth (some even farther than several billion light years), they also provide a unique window on the very early stages of our Universe. However, due to such gigantic distances, their properties are only inferred from the indirect interpretation of their radiative signatures and from matching numerical models: their generation mechanism and dynamics still pose complicated enigmas to the scientific community. Small-scale reproductions in the laboratory would represent a fundamental step towards a deeper understanding of this exotic state of matter. Here we present recent experimental results concerning the laser-driven production of ultra-relativistic e–p beams. In particular, we focus on the possibility of generating beams that present charge neutrality and that allow for collective effects in their dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory. A brief discussion of the analytical and numerical modelling of the dynamics of these plasmas is also presented in order to provide a summary of the novel plasma physics that can be accessed with these objects. Finally, general considerations on the scalability of laboratory plasmas up to astrophysical scenarios are given.
Resumo:
The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.