953 resultados para Generalized model
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.
Resumo:
In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.
Resumo:
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Resumo:
We consider a generalized two-species population dynamic model and analytically solve it for the amensalism and commensalism ecological interactions. These two-species models can be simplified to a one-species model with a time dependent extrinsic growth factor. With a one-species model with an effective carrying capacity one is able to retrieve the steady state solutions of the previous one-species model. The equivalence obtained between the effective carrying capacity and the extrinsic growth factor is complete only for a particular case, the Gompertz model. Here we unveil important aspects of sigmoid growth curves, which are relevant to growth processes and population dynamics. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the spin Hall conductance fluctuations in ballistic mesoscopic systems. We obtain universal expressions for the spin and charge current fluctuations, cast in terms of current-current autocorrelation functions. We show that the latter are conveniently parametrized as deformed Lorentzian shape lines, functions of an external applied magnetic field and the Fermi energy. We find that the charge current fluctuations show quite unique statistical features at the symplectic-unitary crossover regime. Our findings are based on an evaluation of the generalized transmission coefficients correlation functions within the stub model and are amenable to experimental test. DOI: 10.1103/PhysRevB.86.235112
Resumo:
In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper introduces a skewed log-Birnbaum-Saunders regression model based on the skewed sinh-normal distribution proposed by Leiva et al. [A skewed sinh-normal distribution and its properties and application to air pollution, Comm. Statist. Theory Methods 39 (2010), pp. 426-443]. Some influence methods, such as the local influence and generalized leverage, are presented. Additionally, we derived the normal curvatures of local influence under some perturbation schemes. An empirical application to a real data set is presented in order to illustrate the usefulness of the proposed model.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
A rigorous asymptotic theory for Wald residuals in generalized linear models is not yet available. The authors provide matrix formulae of order O(n(-1)), where n is the sample size, for the first two moments of these residuals. The formulae can be applied to many regression models widely used in practice. The authors suggest adjusted Wald residuals to these models with approximately zero mean and unit variance. The expressions were used to analyze a real dataset. Some simulation results indicate that the adjusted Wald residuals are better approximated by the standard normal distribution than the Wald residuals.
Resumo:
We present a generalized test case generation method, called the G method. Although inspired by the W method, the G method, in contrast, allows for test case suite generation even in the absence of characterization sets for the specification models. Instead, the G method relies on knowledge about the index of certain equivalences induced at the implementation models. We show that the W method can be derived from the G method as a particular case. Moreover, we discuss some naturally occurring infinite classes of FSM models over which the G method generates test suites that are exponentially more compact than those produced by the W method.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.