998 resultados para Generalized Kato Spectrum
Resumo:
This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.
Resumo:
While the under-utilization of licensed spectrum based on measurement studies conducted in a few developed countries has spurred lots of interest in opportunistic spectrum access, there exists no infrastructure today for measuring real-time spectrum occupancy across vast geographical regions. In this paper, we present the design and implementation of SpecNet, a first-of-its-kind platform that allows spectrum analyzers around the world to be networked and efficiently used in a coordinated manner for spectrum measurement as well as implementa- tion and evaluation of distributed sensing applications. We demonstrate the value of SpecNet through three applications: 1) remote spectrum measurement, 2) primary transmitter coverage estimation and 3) Spectrum-Cop that quickly identifies and localizes transmitters in a frequency range and geographic region of interest.
Resumo:
We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.
Resumo:
Combating stress is one of the prime requirements for any organism. For parasitic microbes, stress levels are highest during the growth inside the host. Their survival depends on their ability to acclimatize and adapt to new environmental conditions. Robust cellular machinery for stress response is, therefore, both critical and essential especially for pathogenic microorganisms. Microbes have cleverly exploited stress proteins as virulence factors for pathogenesis in their hosts. Owing to its ability to sense and respond to the stress conditions, Heat shock protein 90 (Hsp90) is one of the key stress proteins utilized by parasitic microbes. There are growing evidences for the critical role played by Hsp90 in the growth of pathogenic organisms like Candida, Giardia, Plasmodium, Trypanosoma, and others. This review, therefore, explores potential of exploiting Hsp90 as a target for the treatment of infectious diseases. This molecular chaperone has already gained attention as an effective anti-cancer drug target. As a result, a lot of research has been done at laboratory, preclinical and clinical levels for several Hsp90 inhibitors as potential anti-cancer drugs. In addition, lot of data pertaining to toxicity studies, pharmacokinetics and pharmacodynamics studies, dosage regime, drug related toxicities, dose limiting toxicities as well as adverse drug reactions are available for Hsp90 inhibitors. Therefore, repurposing/repositioning strategies are also being explored for these compounds which have gone through advanced stage clinical trials. This review presents a comprehensive summary of current status of development of Hsp90 as a drug target and its inhibitors as candidate anti-infectives. A particular emphasis is laid on the possibility of repositioning strategies coupled with pharmaceutical solutions required for fulfilling needs for ever growing pharmaceutical infectious disease market.
Resumo:
We address the problem of signal reconstruction from Fourier transform magnitude spectrum. The problem arises in many real-world scenarios where magnitude-only measurements are possible, but it is required to construct a complex-valued signal starting from those measurements. We present some new general results in this context and show that the previously known results on minimum-phase rational transfer functions, and recoverability of minimum-phase functions from magnitude spectrum, form special cases of the results reported in this paper. Some simulation results are also provided to demonstrate the practical feasibility of the reconstruction methodology.
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
The key problem tackled in this paper is the development of a stand-alone self-powered sensor to directly sense the spectrum of mechanical vibrations. Such a sensor could be deployed in wide area sensor networks to monitor structural vibrations of large machines (e. g. aircrafts) and initiate corrective action if the structure approaches resonance. In this paper, we study the feasibility of using stretched membranes of polymer piezoelectric polyvinlidene fluoride for low-frequency vibration spectrum sensing. We design and evaluate a low-frequency vibration spectrum sensor that accepts an incoming vibration and directly provides the spectrum of the vibration as the output.
Resumo:
Infrared spectra of solid formamide are reported as a function of temperature. Solid formamide samples were prepared at 30 K and then annealed to higher temperatures (300 K) with infrared transmission spectra being recorded over the entire temperature range. The NH2 vibrations of the formamide molecule were found to be particularly very sensitive to temperature change. The IR spectra revealed a phase change occurring in solid formamide between 155 and 165 K. Spectral changes observed above and below the phase transition may be attributed to a rearrangement between formamide dimers and the formation of polymers is proposed at higher temperatures.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
We present computer simulation study of two-dimensional infrared spectroscopy (2D-IR) of water confined in reverse micelles (RMs) of various sizes. The present study is motivated by the need to understand the altered dynamics of confined water by performing layerwise decomposition of water, with an aim to quantify the relative contributions of different layers water molecules to the calculated 2D-IR spectrum. The 0-1 transition spectra clearly show substantial elongation, due to in-homogeneous broadening and incomplete spectral diffusion, along the diagonal in the surface water layer of different sized RMs. Fitting of the frequency fluctuation correlation functions reveal that the motion of the surface water molecules is sub-diffusive and indicate the constrained nature of their dynamics. This is further supported by two peak nature of the angular analogue of van Hove correlation function. With increasing system size, the water molecules become more diffusive in nature and spectral diffusion almost completes in the central layer of the larger size RMs. Comparisons between experiments and simulations establish the correspondence between the spectral decomposition available in experiments with the spatial decomposition available in simulations. Simulations also allow a quantitative exploration of the relative role of water, sodium ions, and sulfonate head groups in vibrational dephasing. Interestingly, the negative cross correlation between force on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of each RM. This negative cross correlation gradually increases in the central water pool with increasing RMs size and this is found to be partly responsible for the faster relaxation rate of water in the central pool. (C) 2013 AIP Publishing LLC.
Resumo:
In this paper, a current hysteresis controller with parabolic boundaries for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed. Parabolic boundaries with generalized vector selection logic, valid for all sectors and rotational direction, is used in the proposed controller. The current error space phasor boundary is obtained by first studying the drive scheme with space vector based PWM (SVPWM) controller. Four parabolas are used to approximate this current error space phasor boundary. The system is then run with space phasor based hysteresis PWM controller by limiting the current error space vector (CESV) within the parabolic boundary. The proposed controller has simple controller implementation, nearly constant switching frequency, extended modulation range and fast dynamic response with smooth transition to the over modulation region.
Resumo:
In this paper, we consider the problem of finding a spectrum hole of a specified bandwidth in a given wide band of interest. We propose a new, simple and easily implementable sub-Nyquist sampling scheme for signal acquisition and a spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy in the frequency domain by testing a group of adjacent subbands in a single test. The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent sub-bands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes. We extend this framework to a multi-stage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including non-contiguous spectrum hole search. Further, we provide the analytical means to optimize the hypothesis tests with respect to the detection thresholds, number of samples and group size to minimize the detection delay under a given error rate constraint. Depending on the sparsity and SNR, the proposed algorithms can lead to significantly lower detection delays compared to a conventional bin-by-bin energy detection scheme; the latter is in fact a special case of the group test when the group size is set to 1. We validate our analytical results via Monte Carlo simulations.
Resumo:
In this paper, a nonlinear suboptimal detector whose performance in heavy-tailed noise is significantly better than that of the matched filter is proposed. The detector consists of a nonlinear wavelet denoising filter to enhance the signal-to-noise ratio, followed by a replica correlator. Performance of the detector is investigated through an asymptotic theoretical analysis as well as Monte Carlo simulations. The proposed detector offers the following advantages over the optimal (in the Neyman-Pearson sense) detector: it is easier to implement, and it is more robust with respect to error in modeling the probability distribution of noise.
Resumo:
We consider nonparametric sequential hypothesis testing when the distribution under null hypothesis is fully known and the alternate hypothesis corresponds to some other unknown distribution. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. These algorithms are motivated from spectrum sensing application in Cognitive Radios. Universal sequential hypothesis testing using Lempel Ziv codes and Krichevsky-Trofimov estimator with Arithmetic Encoder are considered and compared for different distributions. Cooperative spectrum sensing with multiple Cognitive Radios using universal codes is also considered.