956 resultados para Gas Sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014, ICEC 25–ICMC 2014

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equity research report

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how the brain works has been one of the greatest goals of mankind. This desire fuels the scientific community to pursue novel techniques able to acquire the complex information produced by the brain at any given moment. The Electrocorticography (ECoG) is one of those techniques. By placing conductive electrodes over the dura, or directly over the cortex, and measuring the electric potential variation, one can acquire information regarding the activation of those areas. In this work, transparent ECoGs, (TrECoGs) are fabricated through thin film deposition of the Transparent Conductive Oxides (TCOs) Indium-Zinc-Oxide (IZO) and Gallium-Zinc-Oxide (GZO). Five distinct devices have been fabricated via shadow masking and photolithography. The data acquired and presented in this work validates the TrECoGs fabricated as efficient devices for recording brain activity. The best results were obtained for the GZO- based TrECoG, which presented an average impedance of 36 kΩ at 1 kHz for 500 μm diameter electrodes, a transmittance close to 90% for the visible spectrum and a clear capability to detect brain signal variations. The IZO based devices also presented high transmittance levels (90%), but with higher impedances, which ranged from 40 kΩ to 100 kΩ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equity research report

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the report for the unit “Sociology of New Information Technologies” of the Master on Computer Sciences at FCT/University Nova Lisbon in 2015-16. The responsible of this curricular unit is Prof. António Moniz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate changes in anterior corneal topography and higher-order aberrations (HOA) after 14-days of rigid gas-permeable (RGP) contact lens (CL) wear in keratoconus subjects comparing two different fitting approaches. Methods: Thirty-one keratoconus subjects (50 eyes) without previous history of CL wear were recruited for the study. Subjects were randomly fitted to either an apical-touch or three-pointtouch fitting approach. The lens’ back optic zone radius (BOZR) was 0.4 mm and 0.1 mm flatter than the first definite apical clearance lens, respectively. Differences between the baseline and post-CL wear for steepest, flattest and average corneal power (ACP) readings, central corneal astigmatism (CCA), maximum tangential curvature (KTag), anterior corneal surface asphericity, anterior corneal surface HOA and thinnest corneal thickness measured with Pentacam were compared. Results: A statistically significant flattening was found over time on the flattest and steepest simulated keratometry and ACP in apical-touch group (all p < 0.01). A statistically significant reduction in KTag was found in both groups after contact lens wear (all p < 0.05). Significant reduction was found over time in CCA (p = 0.001) and anterior corneal asphericity in both groups (p < 0.001). Thickness at the thinnest corneal point increased significantly after CL wear (p < 0.0001). Coma-like and total HOA root mean square (RMS) error were significantly reduced following CL wearing in both fitting approaches (all p < 0.05). Conclusion: Short-term rigid gas-permeable CL wear flattens the anterior cornea, increases the thinnest corneal thickness and reduces anterior surface HOA in keratoconus subjects. Apicaltouch was associated with greater corneal flattening in comparison to three-point-touch lens wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The purpose of this work was to evaluate the potential of a novel custom-designed rigid gas permeable (RGP) contact lens to modify the relative peripheral refractive error in a sample of myopic patients. Methods. Fifty-two right eyes of 52 myopic patients (mean [TSD] age, 21 [T2] years) with spherical refractive errors ranging from j0.75 to j8.00 diopters (D) and refractive astigmatism of 1.00 D or less were fitted with a novel experimental RGP (ExpRGP) lens designed to create myopic defocus in the peripheral retina. A standard RGP (StdRGP) lens was used as a control in the same eye. The relative peripheral refractive error was measured without the lens and with each of two lenses (StdRGP and ExpRGP) using an open-field autorefractometer from 30 degrees nasal to 30 degrees temporal, in 5-degree steps. The effectiveness of the lens design was evaluated as the amount of relative peripheral refractive error difference induced by the ExpRGP compared with no lens and with StdRGP conditions at 30 degrees in the nasal and temporal (averaged) peripheral visual fields. Results. Experimental RGP lens induced a significant change in relative peripheral refractive error compared with the nolens condition (baseline), beyond the 10 degrees of eccentricity to the nasal and temporal side of the visual field (p G 0.05). The maximum effect was achieved at 30 degrees. Wearing the ExpRGP lens, 60% of the eyes had peripheral myopia exceeding j1.00 D, whereas none of the eyes presented with this feature at baseline. There was no significant correlation (r = 0.04; p = 0.756) between the degree of myopia induced at 30 degrees of eccentricity of the visual field with the ExpRGP lens and the baseline refractive error. Conclusions. Custom-designed RGP contact lenses can generate a significant degree of relative peripheral myopia in myopic patients regardless of their baselin spherical equivalent refractive error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate neophyte contact lens wearers’ fitting to rigid gas permeable (RGP) contact lenses in terms of wearing time, tear volume, stability, corneal staining, and subjective ratings, over a 1-month period of time. Methods: Twenty-two young healthy subjects were enrolled for wearing RGP on a daily wear basis. The participants included in this study never wore contact lenses and showed a value under 10 in McMonnies Questionnaire. Contact Lens Dry Eye Questionnaire, Visual Analog Scales, Schirmer test, tear film break-up time (BUT), and corneal staining grading were performed. Follow-up visits were scheduled at 1, 7, 15, and 28 days. Results: Six subjects dropped out due to discomfort from the study before 1 month (27% of discontinuation rate). Successful RGP wearers (16 participants) achieved high levels of subjective vision and reported comfort scores of approximately 9 of 10 between 10 and 15 days. They reported wearing their lenses for an average of 10.1262.43 hr after 1 month of wear. Conversely, unsuccessful wearers discontinued wearing the lenses after the first 10 to 15 days, showing comfort scores and wearing time significantly lower compared with the first day of wear. Schirmer test showed a signifi- cant increase at 10 days (P,0.001), and the BUT trends decreased after the first week of wear in unsuccessful group. Conclusions: Symptomatology related with dryness and discomfort, detected during the first 10 days of the adaptation, may help the clinician to predict those participants who will potentially fail to adapt to RGP lens wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.