980 resultados para GUI OPAC
Resumo:
Silver crucian carp (Carassius auratus gibelio) is a unique triploid bisexual species that can reproduce by gynogenesis. As all other gynogenetic animals, it keeps its chromosome integrity by inhibiting the first meiosis division (no extrusion of the first pole body). To understand the molecular events governing this reproduction mode, suppression subtractive hybridization was used to identify the genes differentially expressed in fully-grown oocytes of the gynogenetic and gonochoristic crucian carp (gyno-carp and gono-carp). From two specific subtractive cDNA libraries, the clones screened out by dot blots and virtual Northern blots were chosen to clone, full-length cDNA by RACE. Four differentially expressed genes were obtained. Two are novel genes and are expressed specifically in the oocytes. The gyno-carp stores much more mRNA of cyclin A2, a new member of the fish A-type cyclin gene, in its fully-grown oocyte than in the gono-carp. The last gene is histone H2A. The histone H2As of these two closely related crucian carps are quite different in the C-terminus. Preliminary characterization of the four genes has been analyzed by nucleotide and deduced amino acid sequence and Northern analysis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The seasonal population dynamics of metacercariae of the bucephalid Dollfustrema vaneyi (Tseng, 1930) Echmann, 1934 in the bullhead catfish Pseudobagrus fulvidraco (Richardson) were investigated in Jiangkou reservoir, Jiangxi Province, east China, during the period from April 1990 to August 1991. In total, 523 fish were obtained, and the overall prevalence of the metacercariae was 89.87 % and mean abundance 136.25 +/- 308.09 (mean +/- SD). A pattern of seasonal changes in prevalence and mean abundance was observed, with higher levels of metacercariae infection in late spring and summer. An analysis of the distribution of D. vaneyi in different organs of P. fulvidraco suggested that the eyes might be a suitable location for the parasite. Furthermore, the possible role of metacercariae in bullhead catfish was discussed in relation to the life cycle of this parasite.
Resumo:
Gynogenetic silver crucian carp, Carassius auratus gibelio, is an intriguing model. system. In the present work, a systemic study has been initiated by introducing suppression subtractive hybridization technique into this model system to identify the differentially expressed genes in oocytes between gynogenetic silver crucian carp and its closely related gonochoristic color crucian carp. Five differential cDNA fragments were identified from the preliminary screening, and two of them are ZP3 homologues. Moreover, the full length ZP3 cDNAs were cloned from their oocyte cDNA libraries. The length of ZP3 cDNAs were 1378 bp for gyno-carp and 1367 bp for gono-carp, and they can be translated into proteins with 435 amino acids. Obvious differences are not only in the composition of amino acids, but also in the number of potential O-linked oligosaccharide sites. In addition, gyno-carp ZP3 amino acid sequence has an unexpected higher identity value with common carp (83.5%) than that with the closely related gono-carp (74.7%). The unique homology may be originated from the ancient hybridization. Northern blot analysis confirmed that expression of the ZP3 gene occurred exclusively in the oocytes. Because O-linked oligosaccharides on ZP3 have been demonstrated to play very important roles in fertilization, it is suggested that the extra O-linked glycosylation sites may be related to the unique sperm-egg recognition mechanism in gynogenesis.
Resumo:
Sex evolution has been a debating focus in evolutionary genetics. In lower vertebrates of reptiles, amphibians, and fish, a species or a bioform reproduces either sexually or asexually but never both. A few species were found to consist of all females in fish. These all-female species can propagate by asexual reproduction modes, such as gynogenesis and hybridogenesis. However, the coexistence of sexuality and asexuality in a single species was recently noted only in a cyprinid fish silver crucian carp, Carassius auratus gibelio. This fish had been demonstrated to be capable of gynogenesis stimulated by sperm from other related species. Surprisingly, natural populations of this fish consist of a minor but significant portion (approx. 20%) of males. As different clones with specific phenotypic and genetic characteristics have been found, and RAPD markers specific to each clone have recently been identified, this fish offers many advantages for analyzing whether or not genetic recombination occurs between different clones. In this study, artificial propagation was performed in clone F and clone D. Ovulated eggs from clone F were divided into two parts and respectively inseminated with sperm from a clone D male and from a red common carp (Cyprinus carpio) male. The control clone D individuals were selected from gynogenetic offspring of clone D activated by sperm of red common carp. The phenotype and sex ratio in the experimental groups were also observed. Using RAPD molecular markers, which allow for reliable discrimination and genetic analysis of different clones, we have revealed direct molecular evidence for gonochoristic reproduction in the gynogenetic silver crucian carp and confirmed a previous hypothesis that the silver crucian carp might reproduce both gynogenetically and gonochoristically. Therefore, we conclude that the silver crucian carp possesses two reproductive modes, i.e., gynogenetic and gonochoristic reproduction. The response mechanism of two reproductive development modes may be the first discovery in vertebrates. Additionally, we discuss the evolutionary implication between gynogenetic and gonochoristic reproduction modes and the contribution of the minor proportion of males to genetic flexibility in the gynogenetic silver crucian carp.
Resumo:
A rhabdovirus was found to be associated with a lethal hemorrhagic disease in the cultured Chinese sucker Myxocyprinus asiaticus Bleeker. The rhabdovirus was amplified and isolated from the infected GCO, (grass carp ovary) cells. In ultrathin sections of liver cells from the diseased fish, the virus particles exhibited the characteristic bacilliform morphology, and budded through vesicle membranes of the infected cells. The isolated rhabdovirus particles were found to have a bacilliform morphology with 2 rounded ends rather than a typical flat base. The virus particles were measured and ranged in size from 150 to 200 nm in length and 50 to 60 nm in diameter. Most other characteristics, including their size, extensive virus infectivity to fish cell Lines, strong cytopathogenic effects, stability at high temperatures, vesicle formation in infected cells, structure protein electrophoretic patterns and the presence of an RNA genome, very closely resembled those of other fish rhabdoviruses. At present it is not known if this is a novel virus species or if it is an isolate of a known fish rhabdovirus. Until a confirmed identification can be made, we will temporarily refer to this virus as Chinese sucker rhabdovirus (CSRV).
Resumo:
The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.
Resumo:
The spindle behavior and MPF activity changes in the progression of oocyte maturation were investigated and compared with cytological observation and kinase assay between gynogenetic silver crucian carp and amphimictic colored crucian carp. MPF activity was measured by using histone I-Il as phosphorylation substrate. There were two similar oscillatory MPF kinase activity changes during oocyte maturation in two kinds of fishes with different reproductive modes, but there existed some subtle difference between them. The subtle difference was that the first peak of MPF kinase activity was kept to a longer-lasting time in the gynogenetic silver crucian carp than in the amphimictic colored crucian carp. It was suggested that the difference may be related to the spindle behavior changes, such as tripolar spindle formation and spindle rearrangement in the gynogenetic crucian carp.
Resumo:
A modified mRNA differential display method has been applied to studying differential expression of protein kinase genes in oocytes between natural gynogenetic silver crucian carp and amphimictic crucian carp. Total RNA was reverse transcribed using downstream 3' primers T(12)MA, T(12)MG and T12MC respectively. Then the reverse transcription products were amplified using upstream 5' kinase-specific primer designed according to protein kinase conserved sequence. The PCR products had different patterns and numbers of: cDNA bands on polyacrylamide:gel. Totally 21 cDNAs fragments were recovered and cloned. Two of them were confirmed to be particularly expressed in oocytes of amphimictic crucian carp, and another was specific for gynogenetic silver crucian carp.
Resumo:
A pathogenic virus (RGV), isolated from diseased pig frog Rana grylio with lethal syndrome, was investigated with regard to morphogenesis and cellular interactions in EPC cells, a cell Line from fish. Different stages of virus amplification, maturation and assembly were observed at nucleus, cytoplasm and cellular membranes. The matured virus particles, were not only distributed diffusely in nucleus, cytoplasm and cellular surface, but also aggregated as pseudocrystalline arrays in the cytoplasm. Virions were released by budding from the plasma membranes, or following cell lysis. Various types of cell damage, such as small vacuoles, spherical inclusions, and swollen and empty mitochondria, were also found. Some typical characteristics of RGV, such as the symmetrical shape of the virions, replication process involving both nuclear and cytoplasmic phases, budding release from cellular membrane and intracellular membrane, viromatrix and paracrystalline aggregation in cytoplasm, and its acute pathogenic effects, were observed to be similar to that of other iridoviruses. Therefore, the RGV appears to be a member of the Iridoviridae based on these studies. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.
Resumo:
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in 'speckles' in the nucleus of interphase cells(1). It is believed that nuclear speckles act as storage sites for splicing factors while splicing occurs on nascent transcripts(2). Splicing factors redistribute in response to transcription inhibition(3,4) or viral infection(5), and nuclear speckles break down and reform as cells progress through mitosis(6). We have now identified and cloned a kinase, SRPK1, which is regulated by the cell cycle and is specific for SR proteins; this kinase is related to a Caenorhabditis elegans kinase and to the fission yeast kinase Dsk1 (ref. 7). SRPK1 specifically induces the disassembly of nuclear speckles, and a high level of SRPK1 inhibits splicing in vitro. Our results indicate that SRPK1 mag have a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells, and the reorganization of nuclear speckles during mitosis.