920 resultados para GRAVITY THEORIES
Resumo:
Explanatory theorists increasingly insist that their theories are useful even though they cannot be deductively applied. But if so, then how do such theories contribute to our understanding of international relations? I argue that explanatory theories are typically heuristically applied: theorists’ accounts of specific empirical episodes are shaped by their theories’ thematic content, but are not inferred from putative causal generalizations or covering laws. These accounts therefore gain no weight from their purely rhetorical association with theories’ quasi-deductive arguments: they must be judged on the plausibility of their empirical claims. Moreover, the quasi-deductive form in which explanatory theories are typically presented obscures their actual explanatory role, which is to indicate what sort of explanation may be required, to provide conceptual categories, and to suggest an empirical focus. This account of how theoretical explanations are constructed subverts the nomothetic–idiographic distinction that is often used to distinguish International Relations from History.
Resumo:
During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.
Resumo:
That construction procurement needs to be re-organized to make it more sustainable implies that there is a problem with the current situation. Starting from this assumption, an overview of construction procurement sets the scene for a discussion of some recent developments relating to organizational frameworks for sustainable construction procurement. Emergent theories dealing with sustainable procurement are considered. There is a plethora of standards and guidance documents for organizing sustainable procurement, originating from a variety of organizations involved. These considerations form the context for approaches being used in practice to achieve sustainable procurement. The Chapter concludes with reflections on why current approaches are insufficient. It seems difficult to persuade clients to spend less money over the life cycle of their buildings. Future directions needed to translate sustainable procurement from rhetoric to reality include the development of suitable incentives and appropriate organizational structures.
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
Two studies investigated the degree to which the relationship between Rapid Automatized Naming (RAN) performance and reading development is driven by shared phonological processes. Study 1 assessed RAN, phonological awareness and reading performance in 1010 children aged 7-10 years. Results showed that RAN deficits occurred in the absence of phonological awareness deficits. These were accompanied by modest reading delays. In structural equation modeling, solutions where RAN was subsumed within a phonological processing factor did not provide a good fit to the data, suggesting that processes outside phonology may drive RAN performance and its association with reading. Study 2 investigated Kail's (1991) proposal that speed of processing underlies this relationship. Children with single RAN deficits showed slower speed of processing than closely matched controls performing normally on RAN. However, regression analysis revealed that RAN made a unique contribution to reading even after accounting for processing speed. Theoretical implications are discussed.
Resumo:
The Maritime Continent archipelago, situated on the equator at 95-165E, has the strongest land-based precipitation on Earth. The latent heat release associated with the rainfall affects the atmospheric circulation throughout the tropics and into the extra-tropics. The greatest source of variability in precipitation is the diurnal cycle. The archipelago is within the convective region of the Madden-Julian Oscillation (MJO), which provides the greatest variability on intra-seasonal time scales: large-scale (∼10^7 km^2) active and suppressed convective envelopes propagate slowly (∼5 m s^-1) eastwards between the Indian and Pacific Oceans. High-resolution satellite data show that a strong diurnal cycle is triggered to the east of the advancing MJO envelope, leading the active MJO by one-eighth of an MJO cycle (∼6 days). Where the diurnal cycle is strong its modulation accounts for 81% of the variability in MJO precipitation. Over land this determines the structure of the diagnosed MJO. This is consistent with the equatorial wave dynamics in existing theories of MJO propagation. The MJO also affects the speed of gravity waves propagating offshore from the Maritime Continent islands. This is largely consistent with changes in static stability during the MJO cycle. The MJO and its interaction with the diurnal cycle are investigated in HiGEM, a high-resolution coupled model. Unlike many models, HiGEM represents the MJO well with eastward-propagating variability on intra-seasonal time scales at the correct zonal wavenumber, although the inter-tropical convergence zone's precipitation peaks strongly at the wrong time, interrupting the MJO's spatial structure. However, the modelled diurnal cycle is too weak and its phase is too early over land. The modulation of the diurnal amplitude by the MJO is also too weak and accounts for only 51% of the variability in MJO precipitation. Implications for forecasting and possible causes of the model errors are discussed, and further modelling studies are proposed.
Resumo:
The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations) to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Resumo:
Following recent findings, the interaction between resolved (Rossby) wave drag and parameterized orographic gravity wave drag (OGWD) is investigated, in terms of their driving of the Brewer–Dobson circulation (BDC), in a comprehensive climate model. To this end, the parameter that effectively determines the strength of OGWD in present-day and doubled CO2 simulations is varied. The authors focus on the Northern Hemisphere during winter when the largest response of the BDC to climate change is predicted to occur. It is found that increases in OGWD are to a remarkable degree compensated by a reduction in midlatitude resolved wave drag, thereby reducing the impact of changes in OGWD on the BDC. This compensation is also found for the response to climate change: changes in the OGWD contribution to the BDC response to climate change are compensated by opposite changes in the resolved wave drag contribution to the BDC response to climate change, thereby reducing the impact of changes in OGWD on the BDC response to climate change. By contrast, compensation does not occur at northern high latitudes, where resolved wave driving and the associated downwelling increase with increasing OGWD, both for the present-day climate and the response to climate change. These findings raise confidence in the credibility of climate model projections of the strengthened BDC.
Resumo:
Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modelling flow over orography is introduced which guarantees curl free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain following grids. Curl-free gradients are achieved by using the co-variant components of velocity over orography rather than the usual horizontal and vertical components. In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves. Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with N∆t up to at least 10 (where N is the Brunt-V ̈ais ̈al ̈a frequency). A warm bubble rising over orography is simulated and the curl free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.
Resumo:
This is the first half of a two-part paper which deals with the social theoretic assumptions underlying system dynamics. The motivation is that clarification in this area can help mainstream social scientists to understand how our field relates to their literature, methods and concerns. Part I has two main sections. The aim of the first is to answer the question: How do the ideas of system dynamics relate to traditional social theories? The theoretic assumptions of the field are seldom explicit but rather are implicit in its practice. The range of system dynamics practice is therefore considered and related to a framework - widely used in both operational research (OR) and systems science - that organises the assumptions behind traditional social theoretic paradigms. Distinct and surprisingly varied groupings of practice are identified, making it difficult to place system dynamics in any one paradigm with any certainty. The difficulties of establishing a social theoretic home for system dynamics are exemplified in the second main section. This is done by considering the question: Is system dynamics deterministic? An analysis shows that attempts to relate system dynamics to strict notions of voluntarism or determinism quickly indicate that the field does not fit with either pole of this dichotomous, and strictly paradigmatic, view. Part I therefore concludes that definitively placing system dynamics with respect to traditional social theories is highly problematic. The scene is therefore set for Part II of the paper, which proposes an innovative and potentially fruitful resolution to this problem.
Resumo:
The requirement for multipoint observations to test theories of magnetospheric substorms is reviewed. A wide variety of such theories have been proposed, but these cannot be properly evaluated because we do not understand how the various features of a substorm are causally linked. In terms of explaining certain substorm features, some theories may be mutually-exclusive rivals. But this is not always the case, making it possible that theories may be either combined into a synthesis model or loosely connected in a more modular view of substorms. Some key questions are defined which require multipoint in-situ measurements, combined with remote sensing observations, of the development and relationship of the major substorm features.
Resumo:
This article analyzes two series of photographs and essays on writers’ rooms published in England and Canada in 2007 and 2008. The Guardian’s Writers Rooms series, with photographs by Eamon McCabe, ran in 2007. In the summer of 2008, The Vancouver International Writers and Readers Festival began to post its own version of The Guardian column on its website by displaying, each week leading up to the Festival in September, a different writer’s “writing space” and an accompanying paragraph. I argue that these images of writers’ rooms, which suggest a cultural fascination with authors’ private compositional practices and materials, reveal a great deal about theoretical constructions of authorship implicit in contemporary literary culture. Far from possessing the museum quality of dead authors’ spaces, rooms that are still being used, incorporating new forms of writing technology, and having drafts of manuscripts scattered around them, can offer insight into such well-worn and ineffable areas of speculation as inspiration, singular authorial genius, and literary productivity.
Resumo:
Purpose – This paper aims to investigate the scale and drivers of cross-border real estate development in Western Europe and Central and Eastern Europe. Design/methodology/approach – Placing cross-border real estate development within the framework of foreign direct investment (FDI), conceptual complexities in characterizing the notional real estate developer are emphasized. Drawing upon a transaction database, this paper proxies cross-border real estate development flows with asset sales by developers. Findings – Much higher levels of market penetration by international real estate developers are found in the less mature markets of Central and Eastern Europe. Analysis suggests a complex range of determinants with physical distance remaining a consistent barrier to cross-border development flows. Originality/value – This analysis adds significant value in terms of understanding cross-border real estate development flows. In this study, a detailed examination of the issues based on a rigorous empirical analysis through gravity modelling is offered. The gravity framework is one of the most confirmed empirical regularities in international economics and commonly applied to trade, FDI, migration, foreign portfolio investment inter alia. This paper assesses the extent to which it provides useful insights into the pattern of cross-border real estate development flows.