988 resultados para GLOBULAR CLUSTERS: INDIVIDUAL: SEGUE 3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound Co-4(triazolate)(2)(OBA)(3)], I, possessing Co-4 clusters. The Co-4 clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS2 layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS2 layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co-4 clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound Co-2(mu 3-OH)(mu(2)-H2O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co-4 clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid advancements in multi-core processor architectures coupled with low-cost, low-latency, high-bandwidth interconnects have made clusters of multi-core machines a common computing resource. Unfortunately, writing good parallel programs that efficiently utilize all the resources in such a cluster is still a major challenge. Various programming languages have been proposed as a solution to this problem, but are yet to be adopted widely to run performance-critical code mainly due to the relatively immature software framework and the effort involved in re-writing existing code in the new language. In this paper, we motivate and describe our initial study in exploring CUDA as a programming language for a cluster of multi-cores. We develop CUDA-For-Clusters (CFC), a framework that transparently orchestrates execution of CUDA kernels on a cluster of multi-core machines. The well-structured nature of a CUDA kernel, the growing popularity, support and stability of the CUDA software stack collectively make CUDA a good candidate to be considered as a programming language for a cluster. CFC uses a mixture of source-to-source compiler transformations, a work distribution runtime and a light-weight software distributed shared memory to manage parallel executions. Initial results on running several standard CUDA benchmark programs achieve impressive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening up an interesting direction of research for further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new anionic inorganic-organic hybrid compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5), I, and H3O](2)Mn-7(mu(3)-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8), II have been prepared by employing mild solvothennal methods. Both the compounds have three-dimensionally extended structures formed by Mn-6 and Mn-7 clusters, respectively. The connectivity between Mn-6 and Mn-7 clusters and 4,4'-sulfonyldibenzoic acid anions (SDBA(2-)) results in a six connected pcu network in I and an eight connected bcu network in II. The presence of hydronium ion (H-3(O+)) along with the solvent molecules in the channels of both the compounds suggested proton conduction in the solids. Proton conductivity studies gave values of similar to 3 x 10(-4) Omega(-1) cm(-1) 98% relative humidity in both the compounds. The high activation energies indicate a vehicle mechanism in the compounds I and II. Magnetic studies indicate antiferromagnetic behavior in both the compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein-ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of similar to 68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of site attributes are provided as a relational database-protein-ligand interaction clusters (PLIC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four neutral polynuclear magnetic clusters, (Mn6Mn2Na2I)-Mn-III-Na-II(N-3)(8)(mu(1)-O)(2)(L-1)(6)(CH3OH)(2)] (1), (Mn6Na2I)-Na-III(N-3)(4)(mu(4)-O)(2)(L-2)(4)(CH3COO)(4)] (2), Ni-5(II)(N-3)(4)(HL1)(4)(HCOO)(2)(CH3OH)(2)(H2O)(2)]center dot 2CH(3)OH (3) and (Ni4Na2I)-Na-II(N-3)(4)(HL2)(6)]center dot 2CH(3)OH (4) have been synthesized using tetradentate ligands H2L1-2 along with azide as a co-ligand. H2L1-2 are the products formed in situ upon condensation of 2-hydroxy-3-methoxybenzaldehyde with 1-aminopropan-2-ol and 1-aminopropan-3-ol, respectively. Single crystal X-ray diffraction and bond valence sum calculation showed that complex 1 is composed of both Mn-III and Mn-II. Complex 3 contains coordinated formate, which was formed upon in situ oxidation of methanol. The magnetic study over a wide range of temperatures of all the complexes (1-4) showed that 1 and 2 are antiferromagnetic whereas other two (3-4) are predominantly ferromagnetic. The estimated ground states of the complexes are S approximate to 3(1), S = 4(2), S = 5(3) and S approximate to 4(4), respectively. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The creation of synthetic systems that emulate the defining properties of living matter, such as motility, gradient-sensing, signaling, and replication, is a grand challenge of biomimetics. Such imitations of life crucially contain active components that transform chemical energy into directed motion. These artificial realizations of motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior, and use it to construct a framework for studying their collective behavior. We find that both the positional and the orientational degrees of freedom of the active colloids can exhibit condensation, signaling formation of clusters and asters. The kinetics of catalysis introduces a natural control parameter for the range of the interaction mediated by the diffusing chemical species. For various regimes in parameter space in the long-ranged limit our system displays precise analogs to gravitational collapse, plasma oscillations, and electrostatic screening. We present prescriptions for how to tune the surface properties of the colloids during fabrication to achieve each type of behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samarium doped barium zirconate titanate ceramics with general formula Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 x = 0, 0.01, 0.02, and 0.03] were prepared by high energy ball milling method. X-ray diffraction patterns and micro-Raman spectroscopy confirmed that these ceramics have a single phase with a tetragonal structure. Rietveld refinement data were employed to model BaO12], SmO12], ZrO6], and TiO6] clusters in the lattice. Scanning electron microscopy shows a reduction in average grain size with the increase of Sm3+ ions into lattice. Temperature-dependent dielectric studies indicate a ferroelectric phase transition and the transition temperature decreases with an increase in Sm3+ ion content. The nature of the transition was investigated by the Curie-Weiss law and it is observed that the diffusivity increases with Sm3+ ion content. The ferroelectric hysteresis loop illustrates that the remnant polarization and coercive field increase with an increase in Sm3+ ions content. Optical properties of the ceramics were studied using ultraviolet-visible diffuse reflectance spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three copper-azido complexes Cu-4(N-3)(8)(L-1)(2)(MeOH)(2)](n) (1), Cu-4(N-3)(8)(L-1)(2)] (2), and Cu-5(N-3)(10)(L-1)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with 2-(2-pyridyl)ethylamine] have been synthesized using lower molar equivalents of the Schiff base ligand with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of the complexes 1 and 2 contains Cu-4(II) building blocks; however, they have distinct basic and overall structures due to a small change in the bridging mode of the peripheral pair of copper atoms in the linear tetranudear structures. Interestingly, these changes are the result of changing the solvent system (MeOH/H2O to EtOH/H2O) used for the synthesis, without changing the proportions of the components (metal to ligand ratio 2:1). Using even lower proportions of the ligand, another unique complex was isolated with Cu-5(II) building units, forming a two-dimensional complex (3). Magnetic susceptibility measurements over a wide range of temperature exhibit the presence of both antiferromagnetic (very weak) and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional, and two different basis sets) have been performed on the complexes 1 and 2 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In0.55Ga0.45N over non-polar (11-20) a-plane In0.17Ga0.83N epilayer grown on a-plane (11-20) GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of InxGa1-xN alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region. (C) 2015 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powder was synthesized via the complex oxalate precursor route at a relatively low temperature (800 degrees C/5 h). The phase formation temperature of BCZT at nanoscale was confirmed by thermogravimetric (TG), differential thermal analysis (DTA) followed by X-ray powder diffraction (XRD) studies. Fourier transform infrared (FTIR) spectroscopy was carried out to confirm the complete decomposition of oxalate precursor into BCZT phase. The XRD and profile fitting revealed the coexistence of cubic and tetragonal phases and was corroborated by Raman study. Transmission electron microscopy (TEM) carried out on 800 degrees C and 1000 degrees C/5 h heat treated BCZT powder revealed the crystallite size to be in the range of 20-50 nm and 40-200 nm respectively. The optical band gap for BCZT nanocrystalline powder was obtained using Kubelka Munk function and was found to be around 3.12 +/- 0.02 eV and 3.03 +/- 0.02 eV respectively for 800 degrees C (20-50 nm) and 1000 degrees C/5 h (40-200 nm) heat treated samples. The piezoelectric properties were studied for two different crystallite sizes (30 and 70 nm) using a piezoresponse force microscope (PFM). The d(33) coefficients obtained for 30 nm and 70 nm sized crystallites were 4 pm V-1 and 47 pm V-1 respectively. These were superior to that of BaTiO3 nanocrystal (approximate to 50 nm) and promising from a technological/industrial applications viewpoint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding alpha-truxillic acid is different from that of the first polymorph, the triclinic form I (P (1) over bar, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure-property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.