855 resultados para Géis de silicone
Resumo:
The controlled-release characteristics of matrix silicone intravaginal rings loaded with between 100 and 971 mg of nonoxynol-9 have been investigated with a view to developing a ring that may offer a new female-controlled method for the prevention of transmission of sexually transmitted diseases, particularly HIV. Intravaginal rings containing 253, 487 and 971 mg of nonoxynol-9 provided a daily release of 2 mg or more over the 8-day release period, the minimal amount of nonoxynol-9 considered to provide an effective vaginal concentration for the prevention of HIV. Furthermore, the maximum daily release of N9 was about 6 mg, an amount significantly smaller than that observed for other nonoxynol-9 products whose large daily doses may in fact increase the occurrence of HIV by causing epithelial damage to the vaginal tissue. The release mechanism of the liquid nonoxynol-9 from the intravaginal rings has also been investigated and compared to models describing the release of solid drugs from the rings. It has been demonstrated through release studies and surface microscopy that a drug depletion zone is not established in such liquid-loaded intravaginal ring systems, with implications for the release kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The in vitro release characteristics of eight low-molecular-weight drugs (clindamycin, 17beta-estradiol, 17beta-estradiol-3-acetate, 17beta-estradiol diacetate, metronidazole, norethisterone, norethisterone acetate and oxybutynin) from silicone matrixtype intravaginal rings of various drug loadings have been evaluated under sink conditions. Through modelling of the release data using the Higuchi equation, and determination of the silicone solubility of the drugs, the apparent silicone elastomer diffusion coefficients of the drugs have been calculated. Furthermore, in an attempt to develop a quantitative model for predicting release rates of new drug substances from these vaginal ring devices, it has been observed that linear relationships exist between the log of the silicone solubility of the drug (mg ml(-1)) and the reciprocal of its melting point (K-1) (y = 3.558x - 9.620, R = 0.77), and also between the log of the diffusion coefficient (cm(2) s(-1)) and the molecular weight of the drug molecule (g mol(-1)) (y = - 0.0068x - 4.0738, R = 0.95). Given that the silicone solubility and silicone diffusion coefficient are the major parameters influencing the permeation of drugs through silicone elastomers, it is now possible to predict through use of the appropriate mathematical equations both matrix-type and reservoir-type intravaginal ring release rates simply from a knowledge of drug melting temperature and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Silicone elastomer vaginal rings are currently being pursued as a controlled-release strategy for delivering microbicidal substances for the prevention of heterosexual transmission of HIV. Although it is well established that the distribution of drugs in delivery systems influences the release characteristics, in practice the distribution is often difficult to quantify in-situ. Therefore, the aim of this work was to determine whether Raman spectroscopy might provide a rapid, non-contact means of measuring the concentrations of the lead candidate HIV microbicide TMC120 in a silicone elastomer reservoir-type vaginal ring. Vaginal rings loaded with TMC120 were manufactured and sectioned before either Raman mapping an entire ring cross-section (100 µm resolution) or running line scans at appropriate time intervals up to 30 h after manufacture. The results demonstrated that detectable amounts of TMC120, above the silicone elastomer saturation concentration, could be detected up to 1 mm into the sheath, presumably as a consequence of permeation and subsequent reprecipitation. The extent of permeation was found to be similar in rings manufactured at 25 and 80°C.
Resumo:
The reported incidence of colonization of oropharyngeal medical devices with Candida spp. has increased in recent years, although few studies that have systematically examined the adherence of yeast cells to such biomaterials, the primary step in the process of colonization. This study, therefore, examined the effects of oropharyngeal atmospheric conditions (5% v/v carbon dioxide) and the presence of a salivary conditioning film on both the surface properties and adherence of Candida albicans, Candida krusei and Candida tropicalis to PVC and silicone. Furthermore, the effects of the salivary conditioning film on the surface properties of these biomaterials are reported. Growth of the three Candida spp. in an atmosphere containing 5% v/v CO2 significantly increased their cell surface hydrophobicity and reduced the zeta potential of C. albicans and C. krusei yet increased the zeta potential of C. tropicalis (p < 0.05). Furthermore, growth in 5% v/v CO2 decreased the adherence of C. tropicalis and C. albicans to both PVC and silicone, however, increased adherence of C. krusei (p < 0.05). Pre-treatment of the microorganisms with pooled human saliva significantly decreased their cell surface hydrophobicity and increased their adherence to either biomaterial in comparison to yeast cells that had been pre-treated with PBS (p < 0.05). Saliva treatment of the microorganisms had no consistent effect on microbial zeta potential. Interestingly, adherence of the three, saliva-treated Candida spp. to saliva-treated silicone and PVC was significantly lower than whenever the microorganisms and biomaterials had been treated with PBS (p < 0.05). Treatment of silicone and PVC with saliva significantly altered the surface properties, notably reducing both the advancing and receding contact angles and, additionally, the microrugosity. These effects may contribute to the decreased adherence of saliva-treated microorganisms to these biomaterials. In conclusion, this study has demonstrated the effects of physiological conditions within the oral cavity on the adherence of selected Candida spp. to biomaterials employed as oropharyngeal medical devices. In particular, this study has ominously shown that these materials act as substrates for yeast colonization, highlighting the need for advancements in biomaterial design. Furthermore, it is important that physiological conditions should be employed whenever biocompatibility of oropharyngeal biomaterials is under investigation. © 2001 Kluwer Academic Publishers.
Resumo:
Historical GIS has the potential to re-invigorate our use of statistics from historical censuses and related sources. In particular, areal interpolation can be used to create long-run time-series of spatially detailed data that will enable us to enhance significantly our understanding of geographical change over periods of a century or more. The difficulty with areal interpolation, however, is that the data that it generates are estimates which will inevitably contain some error. This paper describes a technique that allows the automated identification of possible errors at the level of the individual data values.