939 resultados para Fuel cell materials
Resumo:
A carbon-supported binary Pt(3)Sn catalyst has been prepared using a modified polymeric precursor method under controlled synthesis conditions This material was characterized using X-ray diffraction (XRD). and the results indicate that 23% (of a possible 25%) of Sn is alloyed with Pt, forming a dominant Pt(3)Sn phase. Transmission election microscopy (TEM) shows good dispersion of the electrocatalyst and small particle sizes (3 6 nm +/- 1 nm) The polarization curves for a direct ethanol fuel cell using Pt(3)Sn/C as the anode demonstrated Improved performance compared to that of a PtSn/C E-TEK. especially in the intrinsic resistance-controlled and mass transfer regions. This behavior is probably associated with the Pt(3)Sn phase. The maximum power density for the Pt(3)Sn/C electrocatalyst (58 mW cm(-2)) is nearly twice that of a PtSn/C E-TEK electrocatalyst (33 mW cm(-2)) This behavior is attributed to the presence of a mixed Pt(9)Sn and Pt(3)Sn alloy phase in the commercial catalysts (C) 2009 Elsevier B V All rights reserved
Resumo:
The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
The Intelligent Algorithm is designed for theusing a Battery source. The main function is to automate the Hybrid System through anintelligent Algorithm so that it takes the decision according to the environmental conditionsfor utilizing the Photovoltaic/Solar Energy and in the absence of this, Fuel Cell energy isused. To enhance the performance of the Fuel Cell and Photovoltaic Cell we used batterybank which acts like a buffer and supply the current continuous to the load. To develop the main System whlogic based controller was used. Fuzzy Logic based controller used to develop this system,because they are chosen to be feasible for both controlling the decision process and predictingthe availability of the available energy on the basis of current Photovoltaic and Battery conditions. The Intelligent Algorithm is designed to optimize the performance of the system and to selectthe best available energy source(s) in regard of the input parameters. The enhance function of these Intelligent Controller is to predict the use of available energy resources and turn on thatparticular source for efficient energy utilization. A fuzzy controller was chosen to take thedecisions for the efficient energy utilization from the given resources. The fuzzy logic basedcontroller is designed in the Matlab-Simulink environment. Initially, the fuzzy based ruleswere built. Then MATLAB based simulation system was designed and implemented. Thenthis whole proposed model is simulated and tested for the accuracy of design and performanceof the system.
Resumo:
Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size
Resumo:
The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties
Resumo:
The lanthanum strontium cobalt iron oxide (La1-xSrxCo1-yFeyO3 LSCF) is the most commonly used material for application as cathode in Solid Oxide Fuel Cells (SOFCs), mainly due to their high mixed ionic electronic conductivity between 600 and 800ºC. In this study, LSCF powders with different compositions were synthesized via a combination between citrate and hydrothermal methods. As-prepared powders were calcined from 700 to 900°C and then characterized by X-ray fluorescence, X-ray diffraction, thermal analyses, particle size analyses, nitrogen adsorption (BET) and scanning electronic microscopy. Films of composition La0,6Sr0,4Co0,2Fe0,8O3 (LSCF6428), powders calcined at 900°C, were screen-printed on gadolinium doped ceria (CGO) substrates and sintered between 1150 and 1200°C. The effects of level of sintering on the microstructure and electrochemical performance of electrodes were evaluated by scanning electronic microscopy and impedance spectroscopy. Area specific resistance (ASR) exhibited strong relation with the microstructure of the electrodes. The best electrochemical performance (0.18 ohm.cm2 at 800°C) was obtained for the cathode sintered at 1200°C for 2 h. The electrochemical activity can be further improved through surface activation by impregnation with PrOx, in this case the electrode area specific resistance decreases to values as low as 0.12 ohm.cm2 (800°C), 0.17 ohm.cm2 (750°C) and 0.31 ohm.cm2 (700°C). The results indicate that the citrate-hydrothermal method is suitable for the attainment of LSCF particulates with potential application as cathode component in intermediate temperature solid oxide fuel cells (IT-SOFCs)
Resumo:
Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.
Resumo:
The purpose of this paper is to describe the benefits of sugar cane ethanol in Brazil, appointing the productivity of this type of fuel based on hectares of plantation, its carbon dioxide cycle and the contribution to reduce the greenhouse effect. In the following step the uses of ethanol for hydrogen production by steam reforming is analyzed and some comparison with natural gas steam reforming is performed. The sugar cane industry in Brazil, in a near future, in the hydrogen era, could be modified according to our purpose, since besides the production of sugar, and ethylic and anhydric alcohol, Brazilian sugar cane industry will also be able to produce biohydrogen.Fuel cells appear like a promising technology for energy generation. Among several technologies in the present, the PEMFC (proton exchange membrane fuel cell) is the most appropriate for vehicles application, because it combines durability, high power density, high efficiency, good response and it works at relatively low temperatures. Besides that it is easy to turn it on and off and it is able to support present vibration in vehicles. A PEMFC's problem is the need of noble catalysts like platinum. Another problem is that CO needs to be in low concentration, requiring a more clean hydrogen to avoid fuel cell deterioration.One part of this paper was developed in Stockholm, where there are some buses within the CUTE (clean urban transport for Europe) project that has been in operation with FC since January 2004. Another part was developed in Guaratingueta, Brazil. Brazil intends to start up a program of FC buses. As conclusion, this paper shows the economical analysis comparing buses moved by fuel cells using hydrogen by different kinds of production. Electrolyze with wind turbine, natural gas steam reforming and ethanol steam reforming. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.
Resumo:
We report the preparation and characterization of yttria-stabilized zirconia/nickel oxide composites (YSZ/NiO). This composite is the precursor material of the cermet YSZ/Ni, which is used as solid oxide fuel cell anode material. The performance of the anode is strongly dependent on the microstructural properties of the cermet. Therefore, the control of the microstructure of the YSZ/NiO composite is a key step for the fabrication of high-performance anodes. In this study, the composites were prepared by a modified liquid mixture technique. Scanning electron microscopy analysis evidenced the good dispersion of the phases and that NiO nanoparticles are spread over the YSZ surface. Sintered pellets were studied by X-ray diffraction and impedance spectroscopy. The main results show that the composite is comprised of a well-dispersed mixture of the two phases. The electrical conductivity data show that there is a strong dependence of the transport mechanism on the relative composition of phases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.
Resumo:
A detailed study of the microstructural and electrical properties of the yttria-stabilized zirconia/nickel oxide (YSZ/NiO) composite was performed. This material is the precursor to the solid oxide fuel cell anode cermet YSZ/Ni. A liquid mixture technique was developed to produce the YSZ/NiO composite to fabricate high-performance SOFC anodes. This technique resulted in fine and homogeneous powders and specimens with high electrical conductivity. The combined results showed that this technique is suitable for the production of the anode cermet.
Resumo:
The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.