983 resultados para Freshwater fishes.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project evaluated potential of soluble cellulose as a cheap feed ingredient for major farmed Australian freshwater crayfish species testing their growth performance, digestive enzyme activity and digestive enzyme gene expression patterns. Test animals showed an innate capacity to utilise a range of carbohydrate sources including complex structural polysaccharides. Results suggest that more plant-derived ingredient can be incorporated in formulated low-cost feeds for the culture industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a large, isolated and relatively ancient landmass, New Zealand occupies a unique place in the biological world, with distinctive terrestrial biota and a high proportion of primitive endemic forms. Biology Aotearoa covers the origins, evolution and conservation of the New Zealand flora, fauna and fungi. Each chapter is written by specialists in the field, often working from different perspectives to build up a comprehensive picture. Topics include: the geological history of our land origins, and evolution of our plants, animals and fungi current status of rare and threatened species past, present and future management of native species the effect of human immigration on the native biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project investigated the molecular response of Tra catfish (Pangasianodon hypophthalmus) to elevated salinity conditions. We employed Next generation sequencing platform to evaluate differential gene expression profiles of key genes under two salinity conditions. Results of the current project can form the basis for further studies to confirm the functional roles of specific genes that influence salinity tolerance in the target species and more broadly in other freshwater teleost fishes. Ultimately, the approach can contribute to developing superior culture stocks of the target species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsustainable and exploitative use of one of the most important but scarce resources on the planet - freshwater - continues to create conflict and human dislocation on a grand scale. Instead of witnessing nation-states adopting more equitable and efficient conservation strategies, powerful corporations are permitted to privatise and monopolise diminishing water reservoirs based on flawed neo-liberal assumptions and market models of the ‘global good’. The commodification of water has enabled corporate monopolies and corrupt states to exploit a fundamental human right, and in the process have created new forms of criminality. In recent years, affluent industrialised nations have experienced violent rioting as protestors express opposition to government ‘freshwater taxes’ and to corporate investors seeking to privatise drinking water. These water conflicts have included unprecedented clashes with police and deaths of innocent civilians in South Africa (BBC News, 2014a); the United Nations intervention in Detroit USA after weeks of public protest (Burns, 2014); and the hundreds of thousands of people protesting in Ireland (BBC News, 2014,b; Irish Times 2015). Subsequently, the commodification of freshwater has become a criminological issue for water-abundant rich states, as well as for the highly indebted water-scarce nations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of a freshwater species is often dependent on its ability to disperse within the riverine system. Species with high dispersal abilities tend to be widespread, whereas those with restricted dispersal tend to be geographically restricted and are usually given higher conservation priority. Population structure was compared between a widespread freshwater prawn species, Macrobrachium australiense, and a narrow-range endemic freshwater prawn, Macrobrachium koombooloomba. The distribution of M. australiense and M. koombooloomba did not overlap, although suggested historical river-boundary rearrangements indicate that there has been the potential for dispersal into neighbouring catchments. A fragment of the mtDNA CO1 gene was analysed and a Mantel test revealed a significant isolation by distance effect for both species. Significant overall FST values confirmed that both species exhibited low levels of dispersal, a prediction for populations inhabiting a fragmented upland environment. The level of structure in M. australiense is surprising for a widely distributed species. Not all M. australiense populations conformed to the stream-hierarchy model, with results being best explained by historical river realignment or cross-catchment dispersal. The fact that both species show limited dispersal highlights the importance of conservation in highland areas for both endemic and widely spread species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in water quality parameters such as pH and salinity can have a significant effect on productivity of aquaculture species. Similarly, relative osmotic pressure influences various physiological processes and regulates expression of a number of osmoregulatory genes. Among those, carbonic anhydrase (CA) plays a key role in systemic acid–base balance and ion regulation. Redclaw crayfish (Cherax quadricarinatus) are unique in their ability to thrive in environments with naturally varied pH levels, suggesting unique adaptation to pH stress. To date, however, no studies have focused on identification and characterisation of CA or other osmoregulatory genes in C. quadricarinatus. Here, we analysed the redclaw gill transcriptome and characterized CA genes along with a number of other key osmoregulatory genes that were identified in the transcriptome. We also examined patterns of gene expression of these CA genes when exposed to three pH treatments. In total, 72,382,710 paired end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. Approximately 37% of contigs received significant BLAST hits and 22% were assigned gene ontology terms. Three full length CA isoforms; cytoplasmic CA (ChqCAc), glycosyl-phosphatidylinositol-linked CA (ChqCAg), and β-CA (ChqCA-beta) as well as two partial CA gene sequences were identified. Both partial CA genes showed high similarity to ChqCAg and appeared to be duplicated from the ChqCAg. Full length coding sequences of Na+/K+-ATPase, V-type H+-ATPase, sarcoplasmic Ca+-ATPase, arginine kinase, calreticulin and Cl− channel protein 2 were also identified. Only the ChqCAc gene showed significant differences in expression across the three pH treatments. These data provide valuable information on the gill expressed CA genes and their expression patterns in freshwater crayfish. Overall our data suggest an important role for the ChqCAc gene in response to changes in pH and in systemic acid–base balance in freshwater crayfish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We undertook deep sequencing of gill transcriptomes from two freshwater crayfish, Cherax cainii and Cherax destructor, in order to generate genomic resources for future genomics research. Over 83 and 100 million high quality (quality score (Q) ≥ 30) paired-end Illumina reads (150 bp) were assembled into 147,101 and 136,622 contigs in C. cainii and C. destructor, respectively. A total of 24,630 and 23,623 contigs received significant BLASTx hits and allowed the identification of multiple gill expressed candidate genes associated with pH and salinity balance. These functionally annotated transcripts will provide a resource to facilitate comparative genomic research in the genus Cherax, and in particular allow insights into respiratory and osmoregulatory physiology of this group of animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrition plays an important role in the development of all organisms and in particular that of farmed aquatic species where costs associated with feed can often exceed 60% of total production costs. Crustacean species in addition, have the added metabolic requirement for regular moulting to allow normal growth and this requires large amounts of energy in the form of sugars (glucose). The current study explored the capacity of the giant freshwater prawn to produce endogenous cellulose-degrading enzymes capable of extracting nutrients (simple sugars) from plant sources in formulated feeds used in the prawn aquaculture industry. We identified a putative cellulase cDNA fragment in the target organism of 1576 base pairs in length of non-microbial origin that after protein modelling exhibited a TM-score of 0.916 with a described cellulase reported from another crustacean species. The functional role of cellulase enzymes is to hydrolyse cellulose to glucose and the fragment identified in GFP was highly expressed in the hepatopancreas, the site of primary food digestion and absorption in crustaceans. Hepatopancreatic tissue from Macrobrachium rosenbergii also showed active digestion of cellulose to glucose following an endoglucanase assay. Cellulase gene(s) are present in the genomes of many invertebrate taxa and play an active role in the conversion of cellulose to available energy. Identification and characterization of endogenous cellulase gene(s) in giant freshwater prawn can assist development of the culture industry because the findings confirm that potentially greater levels of low-cost plant-material could be included in artificial formulated diets in the future without necessarily compromising individual growth performance. Ultimately, this development may contribute to more efficient, cost-effective production systems for freshwater prawn culture stocks that meet the animal's basic nutritional requirements and that also support good individual growth rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A candidate gene approach using type I single nucleotide polymorphism (SNP) markers can provide an effective method for detecting genes and gene regions that underlie phenotypic variation in adaptively significant traits. In the absence of available genomic data resources, transcriptomes were recently generated in Macrobrachium rosenbergii to identify candidate genes and markers potentially associated with growth. The characterisation of 47 candidate loci by ABI re-sequencing of four cultured and eight wild samples revealed 342 putative SNPs. Among these, 28 SNPs were selected in 23 growth-related candidate genes to genotype in 200 animals selected for improved growth performance in an experimental GFP culture line in Vietnam. The associations between SNP markers and individual growth performance were then examined. For additive and dominant effects, a total of three exonic SNPs in glycogen phosphorylase (additive), heat shock protein 90 (additive and dominant) and peroxidasin (additive), and a total of six intronic SNPs in ankyrin repeats-like protein (additive and dominant), rolling pebbles (dominant), transforming growth factor-β induced precursor (dominant), and UTP-glucose-1-phosphate uridylyltransferase 2 (dominant) genes showed significant associations with the estimated breeding values in the experimental animals (P =0.001−0.031). Individually, they explained 2.6−4.8 % of the genetic variance (R2=0.026−0.048). This is the first large set of SNP markers reported for M. rosenbergii and will be useful for confirmation of associations in other samples or culture lines as well as having applications in marker-assisted selection in future breeding programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97 bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478 bp and N50 length of 506 bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.