934 resultados para Frequency Up-conversion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory and approach of the broadband teleseismic body waveform inversion are expatiated in this paper, and the defining the crust structure's methods are developed. Based on the teleseismic P-wave data, the theoretic image of the P-wave radical component is calculated via the convolution of the teleseismic P-wave vertical component and the transform function, and thereby a P-wavefrom inversion method is built. The applied results show the approach effective, stable and its resolution high. The exact and reliable teleseismic P waveforms recorded by CDSN and IRIS and its geodynamics are utilized to obtain China and its vicinage lithospheric transfer functions, this region ithospheric structure is inverted through the inversion of reliable transfer functions, the new knowledge about the deep structure of China and its vicinage is obtained, and the reliable seismological evidence is provided to reveal the geodynamic evolution processes and set up the continental collisional theory. The major studies are as follows: Two important methods to study crustal and upper mantle structure -- body wave travel-time inversion and waveform modeling are reviewed systematically. Based on ray theory, travel-time inversion is characterized by simplicity, crustal and upper mantle velocity model can be obtained by using 1-D travel-time inversion preliminary, which introduces the reference model for studying focal location, focal mechanism, and fine structure of crustal and upper mantle. The large-scale lateral inhomogeneity of crustal and upper mantle can be obtained by three-dimensional t ravel-time seismic tomography. Based on elastic dynamics, through the fitting between theoretical seismogram and observed seismogram, waveform modeling can interpret the detail waveform and further uncover one-dimensional fine structure and lateral variation of crustal and upper mantle, especially the media characteristics of singular zones of ray. Whatever travel-time inversion and waveform modeling is supposed under certain approximate conditions, with respective advantages and disadvantages, and provide convincing structure information for elucidating physical and chemical features and geodynamic processes of crustal and upper mantle. Because the direct wave, surface wave, and refraction wave have lower resolution in investigating seismic velocity transitional zone, which is inadequate to study seismic discontinuities. On the contrary, both the converse and reflected wave, which sample the discontinuities directly, must be carefully picked up from seismogram to constrain the velocity transitional zones. Not only can the converse wave and reflected wave study the crustal structure, but also investigate the upper mantle discontinuities. There are a number of global and regional seismic discontinuities in the crustal and upper mantle, which plays a significant role in understanding physical and chemical properties and geodynamic processes of crustal and upper mantle. The broadband teleseismic P waveform inversion is studied particularly. The teleseismic P waveforms contain a lot of information related to source time function, near-source structure, propagation effect through the mantle, receiver structure, and instrument response, receiver function is isolated form teleseismic P waveform through the vector rotation of horizontal components into ray direction and the deconvolution of vertical component from the radial and tangential components of ground motion, the resulting time series is dominated by local receiver structure effect, and is hardly irrelevant to source and deep mantle effects. Receiver function is horizontal response, which eliminate multiple P wave reflection and retain direct wave and P-S converted waves, and is sensitive to the vertical variation of S wave velocity. Velocity structure beneath a seismic station has different response to radial and vertical component of an accident teleseismic P wave. To avoid the limits caused by a simplified assumption on the vertical response, the receiver function method is mended. In the frequency domain, the transfer function is showed by the ratio of radical response and vertical response of the media to P wave. In the time domain, the radial synthetic waveform can be obtained by the convolution of the transfer function with the vertical wave. In order to overcome the numerical instability, generalized reflection and transmission coefficient matrix method is applied to calculate the synthetic waveform so that all multi-reflection and phase conversion response can be included. A new inversion method, VFSA-LM method, is used in this study, which successfully combines very fast simulated annealing method (VFSA) with damped least square inversion method (LM). Synthetic waveform inversion test confirms its effectiveness and efficiency. Broadband teleseismic P waveform inversion is applied in lithospheric velocity study of China and its vicinage. According to the data of high quality CDSN and IRIS, we obtained an outline map showing the distribution of Asian continental crustal thickness. Based on these results gained, the features of distribution of the crustal thickness and outline of crustal structure under the Asian continent have been analyzed and studied. Finally, this paper advances the principal characteristics of the Asian continental crust. There exist four vast areas of relatively minor variations in the crustal thickness, namely, northern, eastern southern and central areas of Asian crust. As a byproduct, the earthquake location is discussed, Which is a basic issue in seismology. Because of the strong trade-off between the assumed initial time and focal depth and the nonlinear of the inversion problems, this issue is not settled at all. Aimed at the problem, a new earthquake location method named SAMS method is presented, In which, the objective function is the absolute value of the remnants of travel times together with the arrival times and use the Fast Simulated Annealing method is used to inverse. Applied in the Chi-Chi event relocation of Taiwan occurred on Sep 21, 2000, the results show that the SAMS method not only can reduce the effects of the trade-off between the initial time and focal depth, but can get better stability and resolving power. At the end of the paper, the inverse Q filtering method for compensating attenuation and frequency dispersion used in the seismic section of depth domain is discussed. According to the forward and inverse results of synthesized seismic records, our Q filtrating operator of the depth domain is consistent with the seismic laws in the absorbing media, which not only considers the effect of the media absorbing of the waves, but also fits the deformation laws, namely the frequency dispersion of the body wave. Two post stacked profiles about 60KM, a neritic area of China processed, the result shows that after the forward Q filtering of the depth domain, the wide of the wavelet of the middle and deep layers is compressed, the resolution and signal noise ratio are enhanced, and the primary sharp and energy distribution of the profile are retained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C-2 selectivity up to 40-70% was achieved, albeit that conversion rate were low, typically 0.5-3.5% at 800-900 degreesC with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/gamma -Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm(2) min oxygen permeation flux were achieved under steady state at 850 degreesC. Methane conversion and oxygen permeation flux increased with increasing temperature, No fracture of the membrane reactor was observed during syngas production. However, H-2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875 degreesC for more than 500h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm(2) min. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contributes to the understanding of the processes involved in the formation and transformation of identities. It achieves this goal by establishing the critical importance of ‘background’ and ‘liminality’ in the shaping of identity. Drawing mainly from the work of cultural anthropology and philosophical hermeneutics a theoretical framework is constructed from which transformative experiences can be analysed. The particular experience at the heart of this study is the phenomenon of conversion and the dynamics involved in the construction of that process. Establishing the axial age as the horizon from which the process of conversion emerged will be the main theme of the first part of the study. Identifying the ‘birth’ of conversion allows a deeper understanding of the historical dynamics that make up the process. From these fundamental dynamics a theoretical framework is constructed in order to analyse the conversion process. Applying this theoretical framework to a number of case-studies will be the central focus of this study. The transformative experiences of Saint Augustine, the fourteenth century nun Margaret Ebner, the communist revolutionary Karl Marx and the literary figure of Arthur Koestler will provide the material onto which the theoretical framework can be applied. A synthesis of the Judaic religious and the Greek philosophical traditions will be the main findings for the shaping of Augustine’s conversion experience. The dissolution of political order coupled with the institutionalisation of the conversion process will illuminate the mystical experiences of Margaret Ebner at a time when empathetic conversion reached its fullest expression. The final case-studies examine two modern ‘conversions’ that seem to have an ideological rather than a religious basis to them. On closer examination it will be found that the German tradition of Biblical Criticism played a most influential role in the ‘conversion’ of Marx and mythology the best medium to understand the experiences of Koestler. The main ideas emerging from this study highlight the fluidity of identity and the important role of ‘background’ in its transformation. The theoretical framework, as constructed for this study, is found to be a useful methodological tool that can offer insights into experiences, such as conversion, that otherwise would remain hidden from our enquiries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with inductive charging of electric vehicle batteries. Rectified power form the 50/60 Hz utility feeds a dc-ac converter which delivers high-frequency ac power to the electric vehicle inductive coupling inlet. The inlet configuration has been defined by the Society of Automotive Engineers in Recommended Practice J-1773. This thesis studies converter topologies related to the series resonant converter. When coupled to the vehicle inlet, the frequency-controlled series-resonant converter results in a capacitively-filtered series-parallel LCLC (SP-LCLC) resonant converter topology with zero voltage switching and many other desirable features. A novel time-domain transformation analysis, termed Modal Analysis, is developed, using a state variable transformation, to analyze and characterize this multi-resonant fourth-orderconverter. Next, Fundamental Mode Approximation (FMA) Analysis, based on a voltage-source model of the load, and its novel extension, Rectifier-Compensated FMA (RCFMA) Analysis, are developed and applied to the SP-LCLC converter. The RCFMA Analysis is a simpler and more intuitive analysis than the Modal Analysis, and provides a relatively accurate closed-form solution for the converter behavior. Phase control of the SP-LCLC converter is investigated as a control option. FMA and RCFMA Analyses are used for detailed characterization. The analyses identify areas of operation, which are also validated experimentally, where it is advantageous to phase control the converter. A novel hybrid control scheme is proposed which integrates frequency and phase control and achieves reduced operating frequency range and improved partial-load efficiency. The phase-controlled SP-LCLC converter can also be configured with a parallel load and is an excellent option for the application. The resulting topology implements soft-switching over the entire load range and has high full-load and partial-load efficiencies. RCFMA Analysis is used to analyze and characterize the new converter topology, and good correlation is shown with experimental results. Finally, a novel single-stage power-factor-corrected ac-dc converter is introduced, which uses the current-source characteristic of the SP-LCLC topology to provide power factor correction over a wide output power range from zero to full load. This converter exhibits all the advantageous characteristics of its dc-dc counterpart, with a reduced parts count and cost. Simulation and experimental results verify the operation of the new converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The confinement of fast particles, present in a tokamak plasma as nuclear fusion products and through external heating, will be essential for any future fusion reactor. Fast particles can be expelled from the plasma through their interaction with Alfvén eigenmode (AE) instabilities. AEs can exist in gaps in the Alfvén continuum created by plasma equilibrium non-uniformities. In the ASDEX Upgrade tokamak, low-frequency modes in the frequency range from f ≈ 10 − 90kHz, including beta-induced Alfvén eigenmodes (BAEs) and lower frequency modes with mixed Alfvén and acoustic polarisations, have been observed. These exist in gaps in the Alfvén continuum opened up by geodesic curvature and finite plasma compressibility. In this thesis, a kinetic dispersion relation is solved numerically to investigate the influence of thermal plasma profiles on the evolution of these low-frequency modes during the sawtooth cycle. Using information gained from various experimental sources to constrain the equilibrium reconstructions, realistic safety factor profiles are obtained for the analysis using the CLISTE code. The results for the continuum accumulation point evolution are then compared with experimental results from ASDEX Upgrade during periods of ICRH only as well as for periods with both ICRH and ECRH applied simultaneously. It is found that the diamagnetic frequency plays an important role in influencing the dynamics of BAEs and low-frequency acoustic Alfvén eigenmodes, primarily through the presence of gradients in the thermal plasma profiles. Different types of modes that are observed during discharges heated almost exclusively by ECRH were also investigated. These include electron internal transport barrier (eITB) driven modes, which are observed to coincide with the occurrence of an eITB in the plasma during the low-density phase of the discharge. Also observed are BAE-like modes and edge-TAEs, both of which occur during the H-mode phase of the discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gemstone Team WAVES (Water and Versatile Energy Systems)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0â??0.5 mg/L) and the second with Escherichia coli (biomass 0â??42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density 12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human papillomavirus type 16 proteins E6 and E7 have been shown to cause centrosome amplification and lagging chromosomes during mitosis. These abnormalities during mitosis can result in missegregation of the chromosomes, leading to chromosomal instability. Genomic instability is thought to be an essential part of the conversion of a normal cell to a cancer cell. We now show that E6 and E7 together cause polyploidy in primary human keratinocytes soon after these genes are introduced into the cells. Polyploidy seems to result from a spindle checkpoint failure arising from abrogation of the normal functions of p53 and retinoblastoma family members by E6 and E7, respectively. In addition, E6 and E7 cause deregulation of cellular genes such as Plk1, Aurora-A, cdk1, and Nek2, which are known to control the G2-M-phase transition and the ordered progression through mitosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydroformylation of 1-octene under continuous flow conditions is described. The system involves dissolving the catalyst, made in situ from [ Rh(acac)(CO)(2)] (acacH = 2,4- pentanedione) and [RMIM][TPPMS] ( RMIM = 1-propyl (Pr), 1-pentyl (Pn) or 1-octyl (O)-3-methyl imidazolium, TPPMS = Ph2P(3-C6H4SO3)), in a mixture of nonanal and 1-octene and passing the substrate, 1-octene, together with CO and H-2 through the system dissolved in supercritical CO2 (scCO(2)). [PrMIM][TPPMS] is poorly soluble in the medium so heavy rhodium leaching (as complexes not containing phosphine) occurs in the early part of the reaction. [PnMIM][ PPMS] affords good rates at relatively low catalyst loadings and relatively low overall pressure (125 bar) with rhodium losses <1 ppm, but the catalyst precipitates at higher catalyst loadings, leading to lower reaction rates. [OMIM][ TPPMS] is the most soluble ligand and promotes high reaction rates, although preliminary experiments suggested that rhodium leaching was high at 5-10 ppm. Optimisation aimed at balancing flows so that the level within the reactor remained constant involved a reactor set up based around a reactor fitted with a sight glass and sparging stirrer with the CO2 being fed by a cooled head HPLC pump, 1-octene by a standard HPLC pump and CO/H-2 through a mass flow controller. The pressure was controlled by a back pressure regulator. Using this set up, [OMIM][ TPPMS] as the ligand and a total pressure of 140 bar, it was possible to control the level within the reactor and obtain a turnover frequency of ca. 180 h(-1). Rhodium losses in the optimised system were 100 ppb. Transport studies showed that 1-octene is preferentially transported over the aldehydes at all pressures, although the difference in mol fraction in the mobile phase was less at lower pressures. Nonanal in the mobile phase suppresses the extraction of 1-octene to some extent, so it is better to operate at high conversion and low pressure to optimise the extraction of the products relative to the substrate. CO and H2 in the mobile phase also suppress the extraction effciency by as much as 80%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to determine the effect of plane of nutrition in early pregnancy (EP) and mid-pregnancy (W), on the productive performance of 1- and 2-year-old ewes and their offspring. Over 2 successive years, between days 0 and 39 after synchronized mating (EP), 1- (n=117) and 2- (n=52) year-old ewes were allowed 60% (low, L-EP), 100% (medium, M-EP) or 200% (high, H-EP) of requirements for maintenance (M). Between days 40 and 90 (MP), 1-year-old ewes were allowed 140% (M-MP) or 200% (H-MP), while 2-year-old ewes were allowed 80% (M-MP) or 140% (H-MP) of their M requirement. After day 90, all ewes were fed to meet requirements for late pregnancy. Increasing the plane of nutrition between days 0 and 39 resulted in increases in live weight (LW) (PM-EP>LEP), differences that in 1-year-old ewes were sustained to lambing (P0.05). These ewes exhibited more positive maternal behaviours (e.g. increased grooming frequency and duration, P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.