917 resultados para Foxe, John, 1516-1587.
Resumo:
This edition of Milton’s Epistolarum Familiarium Liber Unus and of his Uncollected Letters, will appear as 672 pp. of The Complete Works of John Milton Volume XI, eds. Gordon Campbell and Edward Jones (Oxford University Press, forthcoming 2016). A diplomatic Latin text and a new facing English translation are complemented by a detailed Introduction and commentary that situate Milton’s Latin letters in relation to the classical, pedagogical and essentially humanist contexts at the heart of their composition. Now the art of epistolography advocated and exemplified by Cicero and Quintilian and embraced by Renaissance pedagogical manuals is read through a humanist filter whereby, via the precedent (and very title) of Epistolae Familiares, the Miltonic Liber is shown to engage with a neo-Latin re-invention of the classical epistola that had come to birth in quattrocento Italy in the letters of Petrarch and his contemporaries. At the same time the Epistolae are seen as offering fresh insight into Milton’s views on education, philology, his relations with Italian literati, his blindness, the poetic dimension of his Latin prose, and especially his verbal ingenuity as the ‘words’ of Latin ‘Letters’ become a self-conscious showcasing of etymological punning on the ‘letters’ of Latin ‘words’. The edition also announces several new discoveries, most notably its uncovering and collation of a manuscript of Henry Oldenburg’s transcription (in his Liber Epistolaris held in Royal Society, London) of Milton’s Ep. Fam. 25 (to Richard Jones). Oldenburg’s transcription (from the original sent to his pupil Jones) is an important find, given the loss of all but two of the manuscripts of Milton’s original Latin letters included in the 1674 volume. The edition also presents new evidence in regard to Milton’s relationships with the Italian philologist Benedetto Buonmattei, the Greek humanist Leonard Philaras, the radical pastor Jean Labadie (and the French church of London), and the elusive Peter Heimbach.
Resumo:
The exposure of historic stone to processes of lichen-induced surface biomodification is determined, first and foremost, by the bioreceptivity of those surfaces to lichen colonization. As an important component of surface bioreceptivity, spatiotemporal variation in stone surface temperature plays a critical role in the spatial distribution of saxicolous lichen on historic stone structures, especially within seasonally hot environments. The ornate limestone and tufa stairwell of the Monastery of Cartuja (1516), Granada, Spain, exhibits significant aspect-related differences in lichen distribution. Lichen coverage and
diurnal fluctuations in stone surface temperature on the stairwell were monitored and mapped, under anticyclonic conditions in summer and winter, using an infrared thermometer and Geographical Information Systems approach. This research suggests that it is not extreme high surface temperatures that
determine the presence or absence of lichen coverage on stonework. Instead, average stone surface temperatures
over the course of the year seem to play a critical role in determining whether or not surfaces are receptive to lichen colonization and subsequent biomodification. It is inferred that lichen, capable of surviving extreme surface temperatures during the Mediterranean summer in an ametabolic state, require a respite period of lower temperatures within which they can metabolize, grow and reproduce.
The higher the average annual temperature a surface experiences, the shorter the respite period for any lichen potentially inhabiting that surface. A critical average temperature threshold of approximately 21 ?C has been identified on the stairwell, with average stone surface temperatures greater than this
generally inhibiting lichen colonization. A brief visual condition assessment between lichen-covered and lichen-free surfaces on the limestone sections of the stairwell suggests relative bioprotection induced by lichen coverage, with stonework quality and sharpness remaining more defined beneath lichen-covered surfaces. The methodology employed in this paper may have further applications in the monitoring and mapping of thermal stress fatigue on historic building materials.