986 resultados para Force Distribution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth of online social media networks like Facebook and Twitter is strongly influencing news media to engage with such networks for generating newsworthy content, accessing mass audiences for news consumption and using the platforms for news distribution. While both media’s complement each other as sources of news and information, they also compete against each other as news repositories and are observed vying for the same audiences. We call this phenomenon the competing-complementarity (C-C) engagement. To investigate the C-C relationship we use Fidler’s “mediamorphosis” concept to explain the metamorphosis of news media in the online domain. We make two contributions to Fidler’s concept by offering an additional principle “mass user migration” to address the characteristics of metamorphosis and an additional driver “transcended social engagement” to show the force that propels it. Besides, we also propose four accelerators that influence metamorphosis. Theoretical analysis of news media’s metamorphosis indicates its affinity to online social media. We apply niche and gratification theories to explain complementarity, and displacement effects on media consumption habits to trace competition between both media’s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of large number of single-phase distributed energy resources (DERs) can cause severe power quality problems in distribution networks. The DERs can be installed in random locations. This may cause the generation in a particular phase exceeds the load demand in that phase. Therefore the excess power in that phase will be fed back to the transmission network. To avoid this problem, the paper proposes the use of distribution static compensator (DSTATCOM) that needs to be connected at the first bus following a substation. When operated properly, the DSTATCOM can facilitate a set of balanced current flow from the substation, even when excess power is generated by DERs. The proposals are validated through extensive digital computer simulation studies using PSCAD and MATLAB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current unbalance is a significant power quality problem in distribution networks. This problem increases further with the increased penetration of single-phase photovoltaic cells. In this paper, a new approach is developed for current unbalance reduction in medium voltage distribution networks. The method is based on utilization of three single-phase voltage source converters connected in delta configuration between the phases. Each converter is controlled to function as a varying capacitor. The combination of the load and the compensator will result in a balanced load with unity power factor. The efficacy of the proposed current unbalance reduction concept is verified through dynamic simulations in PSCAD/EMTDC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load in distribution networks is normally measured at the 11kV supply points; little or no information is known about the type of customers and their contributions to the load. This paper proposes statistical methods to decompose an unknown distribution feeder load to its customer load sector/subsector profiles. The approach used in this paper should assist electricity suppliers in economic load management, strategic planning and future network reinforcements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a complex 3D deformity of the spine, which may require surgical correction in severe cases. Computer models of the spine provide a potentially powerful tool to virtually ‘test’ various surgical scenarios prior to surgery. Using patient-specific computer models of seven AIS patients who had undergone a single rod anterior procedure, we have recently found that the majority of the deformity correction occurs at the apical joint or the joint immediately cephalic to the apex. In the current paper, we investigate the biomechanics of the apical joint for these patients using clinically measured intra-operative compressive forces applied during implant placement. The aim of this study is to determine a relationship between the compressive joint force applied intra-operatively and the achievable deformity correction at the apical joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Black Rat (Rattus rattus), a global pest within the macadamia production industry, causes up to 30% crop damage in Australian orchards. During early stages of production in Australia, research demonstrated the importance of non crop adjacent habitats as significant in affecting the patterns of crop damage seen throughout orchards. Where once rodent damage was limited to the outside edges of orchard blocks, growers are now reporting finding crop damage throughout entire orchards. This study therefore aims to explore the spatial patterns of rodent distribution and damage now occurring in Australian macadamia orchards. We show that rodent damage and rodent distribution in these newer production regions differ from that shown in previous Australian research. Previous Australian research has shown damage patterns which were associated with the edges of orchard blocks however this study demonstrates a more widespread damage distribution. In the current study there is no relationship between rodent damage and the orchard edge. Arboreal rodent nests were identified within these newer orchard systems, suggesting rodents are residing within the tree component of the orchard system and not dependent on adjacent non-crop habitat for shelter. Results from this study confirm that rodents have modified their nesting and foraging behaviour in newer orchards systems in Australia. We suggest that this is a response of increased and prolonged availability of macadamia nuts in newer production regions enabling populations to be maintained throughout the year. Management strategies will require modification if control is to be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Frequent illness and injury among workers with high body mass index (BMI) can raise the costs of employee healthcare and reduce workforce maintenance and productivity. These issues are particularly important in vocational settings such as the military, which require good physical health, regular attendance and teamwork to operate efficiently. The purpose of this study was to compare the incidence of injury and illness, absenteeism, productivity, healthcare usage and administrative outcomes among Australian Defence Force personnel with varying BMI. METHODS: Personnel were grouped into cohorts according to the following ranges for (BMI): normal (18.5-24.9 kg/m²; n = 197), overweight (25-29.9 kg/m²; n = 154) and obese (≥30 kg/m²) with restricted body fat (≤28 % for females, ≤24 % for males) (n = 148) and with no restriction on body fat (n = 180). Medical records for each individual were audited retrospectively to record the incidence of injury and illness, absenteeism, productivity, healthcare usage (i.e., consultation with medical specialists, hospital stays, medical investigations, prescriptions) and administrative outcomes (e.g., discharge from service) over one year. These data were then grouped and compared between the cohorts. RESULTS: The prevalence of injury and illness, cost of medical specialist consultations and cost of medical scans were all higher (p <0.05) in both obese cohorts compared with the normal cohort. The estimated productivity losses from restricted work days were also higher (p <0.05) in the obese cohort with no restriction on body fat compared with the normal cohort. Within the obese cohort, the prevalence of injury and illness, healthcare usage and productivity were not significantly greater in the obese cohort with no restriction on body fat compared with the cohort with restricted body fat. The number of restricted work days, the rate of re-classification of Medical Employment Classification and the rate of discharge from service were similar between all four cohorts. CONCLUSIONS: High BMI in the military increases healthcare usage, but does not disrupt workforce maintenance. The greater prevalence of injury and illness, greater healthcare usage and lower productivity in obese Australian Defence Force personnel is not related to higher levels of body fat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inquiries to return predictability are traditionally limited to conditional mean, while literature on portfolio selection is replete with moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regressions and copulas, using quantile regressions to extract information in marginal distributions and copulas to capture dependence structure. A preference function which captures higher moments is proposed for portfolio selection. An empirical application highlights the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-surface proteoglycans participate in several biological functions such as cell cell and cell-matrix interactions, cell adhesion, the binding to various growth factors as co-receptors and repair. To understand better the expression and distribution of cell-surface proteoglycans in the periodontal tissues, an immunohistochemical evaluation of the normal Lewis rat molar periodontium using panels of antibodies for syndecan-1, -2, -4, glypican and betaglycan was carried out. Our results demonstrated the expression and distribution of all proteoglycans in the suprabasal gingival epithelium, soft and hard connective tissues. Both cellular and matrix localization was evident within the various periodontal compartments. The presence of these cell-surface proteoglycans indicates the potential for roles in the process of tissue homeostasis, repair or regeneration in periodontium of which each function requires further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell–cell and cell–matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell–cell and cell–matrix interactions, while syndecan-2 showed a predilection to associate with cell–matrix interactions during hard tissue formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When wheels pass over insulated rail joints (IRJs) a vertical impact force is generated. The ability to measure the impact force is valuable as the force signature helps understand the behaviour of the IRJs, in particular their potential for failure. The impact forces are thought to be one of the main factors that cause damage to the IRJ and track components. Study of the deterioration mechanism helps finding new methods to improve the service life of IRJs in track. In this research, the strain-gage-based wheel load detector, for the first time, is employed to measure the wheel–rail contact-impact force at an IRJ in a heavy haul rail line. In this technique, the strain gages are installed within the IRJ assembly without disturbing the structural integrity of IRJ and arranged in a full wheatstone bridge to form a wheel load detector. The instrumented IRJ is first tested and calibrated in the lab and then installed in the field. For comparison purposes, a reference rail section is also instrumented with the same strain gage pattern as the IRJ. In this paper the measurement technique, the process of instrumentation, and tests as well as some typical data obtained from the field and the inferences are presented.